

Smarty
PHP Template Programming and Applications

A step-by-step guide to building PHP web sites and
applications using the Smarty templating engine

João Prado Maia
Hasin Hayder
Lucian Gheorghe

 BIRMINGHAM - MUMBAI

Download at Boykma.Com

Smarty
PHP Template Programming and Applications

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, Packt Publishing, nor its dealers or distributors will
be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

First published: April 2006

Production Reference: 1050406

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-40-X
www.packtpub.com

Cover Design by www.visionwt.com

Download at Boykma.Com

Credits

Authors
João Prado Maia
Hasin Hayder
Lucian Gheorghe

Reviewer
Mizanur Rahman

Technical Editor
Rushabh Sanghavi

Editorial Manager
Dipali Chittar

Development Editor
David Barnes

Indexer
Ashutosh Pande

Proofreader
Chris Smith

Production Coordinator
Manjiri Nadkarni

Cover Designer
Helen Wood

Download at Boykma.Com

About the Authors

João Prado Maia is Lead Software Developer with Alert Logic, Inc. and was previously with
MySQL AB as the lead developer behind Eventum, an issue tracking system, and MySQL
Network, a subscription product for everything related to MySQL services. He has been
working with PHP, Smarty, and PEAR for several years, and maintains phpbrasil.com, one of
the most popular PHP-related community sites in Brazil. He is also interested in fostering a
community of PHP developers in Houston by organizing the Houston PHP Users Group at
http://houstonphp.org.

I would like to thank my wife for her encouragement and patience while I was writing
chapters for this book. I dedicate my work to you, Juliana.

Hasin Hayder graduated in Civil Engineering from Rajshahi University of Engineering and
Technology (RUET). He is an open-source enthusiast who has been programming since early
2001. He maintains phpXperts, the largest PHP user group in Bangladesh, and Zephyr, an
open-source AJAX-based MVC framework for PHP5 developers. He is currently working as a
web application developer in a Norwegian software development company, "Somewhere In...".
You can reach him at hasin@somewherein.net.

I would like to thank my editors from Packt Publishing, David Barnes, Rushabh Sanghavi,
and Patricia Weir for this book. Without them I doubt I would have completed my chapters
so easily. I would also like to thank Damian and Arnab in Packt Publishing for their help.

Thanks also go to Mom, Dad, all my family members, Mahbub bhai, Rashidul Hasan and
all my friends for supporting me. And finally I would like to thank Ashikuzzaman Fahim and
Arild Klokkerhaug, who inspire me a lot.

I would like to dedicate this book to my wife and my best friend Ayesha. I know I could not
live here without you.

Download at Boykma.Com

http://houstonphp.org/
mailto:hasin@somewherein.net

Lucian Gheorghe is currently working as a senior network engineer for Globtel Internet, a
significant Internet and Telephony Services Provider to the Romanian market. Even if it's not his
main activity, He has been programming in PHP for over 5 years building billing interfaces,
industrial software interfaces, e-commerce sites, and so on. He had a lot of help from a friend
called Smarty in his programming experiences.

Lucian got his first taste of writing when he contributed a few chapters to the book Beginning
PHP 5 and MySQL E-Commerce by Cristian Darie and Mihai Bucica, Apress, 2004, with his
appendix for Project Management added to the book Beginning ASP.NET 2.0 E-Commerce in C#
2005 by Cristian Darie and Karli Watson, Apress, 2005.

I would like to thank you for buying this book, my parents for everything they did for me, my
girlfriend who stood by me, the team at Globtel, which is like a second family for me and last,
but not least a very good friend, the greatest technical author alive—Cristian Darie.

Download at Boykma.Com

About the Reviewer

Mizanur Rahman is a Computer Science graduate from North South University, Bangladesh. He
has 7 years of programming experience and vast knowledge on open-source technologies. He has
more than 5 years of experience on working with PHP and PHP-related tools and technologies.
Currently he is working as a full time senior software engineer in a USA-based software company
located in Dhaka.

Download at Boykma.Com

Download at Boykma.Com

Table of Contents

Preface 1
Chapter 1: Introduction to Smarty 5

Templating Systems 5
Why Use a Templating System? 6
The Smartness of Smarty 7
Smarty Alternatives 8

A Rough Guide to the Software Design Process 8
Working in Teams: Layers and Separation of Concerns 9

Smarty—The Ultimate Templating System for PHP 10
Is Smarty Fast? 11
Is Smarty Secure? 11

Smarty's Main Features 12
Variable Modifiers 12
Template Functions 12
Debugging 13
Plug-ins 13
Filters 14

Smarty Internals 14
Installing and Configuring Smarty 15

Step 1: Obtaining Smarty 15
Step 2: Configure PHP to Find the Smarty Libraries 16

On Windows 16
On Linux 16

An Alternative to Step 2: Using Smarty without Having Full Access to the
System 16
Step 3: Set Up Smarty for Your Application 17
Step 4: Verifying the Installation 17
Smarty Development Versions on CVS 18

Upgrading a Smarty Site 19
Summary 19

Download at Boykma.Com

Table of Contents

Chapter 2: Smarty Site Architecture 21
Separation of Concerns 22

What Does Concern Mean? 22
A Problem-Solving Perspective 22
Cross-cutting Concerns 23

Roles Involved in Building and Maintaining a Website 23
Starting a Smarty Project 24

Directory Structure 24
Securing our Smarty Project 25
The Data Access Layer 25

How it Works 27
The Business Logic Layer 27

How it Works 28
The Presentation Layer 29

How it Works 30
The Result 31

Summary 32

Smarty for Designers

Chapter 3: What Designers Need to Know 33
Development Team Problems: Common Scenarios 33
Roles of a Template Designer and a Programmer 34
Definitions and Concepts for Designers 35

Concept of Reusability and Components 36
Splitting into Components 38
How to Design Table-less Layouts? 41
Handy Built-in Tags 43

Choosing an Editor for Template Design 44
Collaborating with Programmers 46
Summary 47

Chapter 4: Creating a Template 49
Design Concepts, from HTML to TPL 49
Introduction to Smarty Variables 52
Starting Templates 53

Non-associative Array 54
Associative Array 54

ii

Download at Boykma.Com

Table of Contents

Passing Arrays to Smarty Templates and Manipulating Them 54
Basic Templating 56

Logical Conditions 56
Loops 57

section 58
foreach 60

Templates in the Real World 61
Calendar 61
Database Report 63
Data Input Forms 67
Email Newsletter 70
Running PHP Code Inside your Templates 73

Summary 74
Chapter 5: Advanced Templating 75

Smarty under the Hood 75
Compile Steps 77
Prefilters and Postfilters 77
What is a Smarty Modifier? 77

Stretch your Imagination with Smarty 77
Student Transcript 77
Photo Gallery 80

Available Modifiers 82
capitalize 83
count_characters 83
cat 84
count_paragraphs 84
count_words 85
date_format 85
default 87
escape 87
indent 88
lower 89
upper 89
nl2br 89
regex_replace 90
replace 91
spacify 91
string_format 91

 iii

Download at Boykma.Com

Table of Contents

strip 92
strip_tags 93
truncate 93
wordwrap 94

Combining Modifiers 94
Configuration Files 95
Summary 96

Chapter 6: Smarty Functions 97
Types of Smarty Functions 97
Functions in Action 97

Action: Re-using Page Elements with the include Function 99
Explanation 100

Inserting Dynamic Content 100
Passing Variables to Included Templates 102
Saving Variables in Configuration Files 103
Creating Configuration Sections for Each Page 104
Handling Lists in Templates 106
Removing Extra White Space from Templates 109
Handling JavaScript Code in Templates 110
Processing Deeply Nested Arrays 112
Cycling Through a List of Values 116
Avoiding Spam Indexers 117
Form-Related Functions 118
More Form-Related Functions 120
Summary 123

Chapter 7: Debugging for Designers 125
Debugging Smarty Templates 125
Semantic Errors 126
Common Smarty Errors 128
Other Common Smarty Errors 135
Smarty Debug Console 135
Summary 136

iv

Download at Boykma.Com

Table of Contents

Smarty for Programmers

Chapter 8: Built-in Smarty Variables and Methods 137
Built-in Smarty Variables 139

$template_dir 139
$compile_dir 139
$config_dir 139
$plugins_dir 139
$debugging 139
$error_reporting 140
$debug_tpl 140
$debugging_ctrl 140
$compile_check 140
$force_compile 140
$caching 140
$cache_dir 141
$cache_lifetime 141
$cache_modified_check 141
$php_handling 141
$security 141
$secure_dir 142
$security_settings 142
$trusted_dir 142
$left_delimiter 142
$right_delimiter 142
$request_vars_order 143
$request_use_auto_globals 143
$compile_id 143
$use_sub_dirs 143
$default_modifiers 143
$default_resource_type 143
$cache_handler_func 143
$autoload_filters 144
$config_overwrite 144
$config_booleanize 144
$config_read_hidden 144
$config_fix_newlines 144
$default_template_handler_func 144
$compiler_file 144
$compiler_class 144
$config_class 144

Handy Built-in Smarty Variables Table 145
 v

Download at Boykma.Com

Table of Contents

Built-in Smarty Methods 148
assign 148
assign_by_ref 148
Example: Working of assign and assign_by_ref 149
append 151
append_by_ref 151
clear_assign 151
register_function 152
unregister_function 152
register_object 153
unregister_object 153
register_block 153
unregister_block 154
register_compiler_function 154
unregister_compiler_function 154
register_modifier 155
unregister_modifier 155
register_resource 155
unregister_resource 156
register_prefilter 156
unregister_prefilter 156
register_postfilter 156
unregister_postfilter 157
register_outputfilter 157
unregister_outputfilter 157
load_filter 157
clear_cache 158
clear_all_cache 158
is_cached 158
clear_all_assign 158
clear_compiled_tpl 159
template_exists 159
get_template_vars 159
get_config_vars 159
trigger_error 159
display 160
fetch 160
config_load 160
get_registered_object 160
clear_config 161

Summary 161

vi

Download at Boykma.Com

Table of Contents

Chapter 9: Caching and Performance 163
Caching in Smarty 164
Dynamically Caching Template Sections 165
Clearing the Cache 165
Advanced Caching Features 166
Using Cache Groups 167
Clearing a Cache Group 168
Avoiding the Cache 168
Creating a Custom Cache Handler 171
Optimizing Smarty Applications 176
Profiling PHP 177
Designing Sites for Effective Caching 178

The Last-Modified and ETag Headers 178
The Expires Header 179
The Cache-Control Header 180

Tools: ApacheBench (ab) 180
Tools: Xdebug 181
Tools: WinCacheGrind 183
Summary 184

Chapter 10: Extending Smarty with Plug-ins 185
Finding and Installing Plug-ins 185
Useful Plug-ins 186

HTML List Plug-in 186
File Size Format Plug-in 187
Google Highlight Plug-in 189

Writing your own Plug-ins 191
Plug-in Types 192

Functions 192
Modifiers 193
Block Functions 193
Compiler Functions 193
Prefilters, Postfilters, and Output Filters 193
Resources 193
Inserts 194

 vii

Download at Boykma.Com

Table of Contents

Registering Plug-ins 194
Example Plug-in: Calendar 196
Example Plug-in: Auto-link URLs 199
Summary 201

Chapter 11: Filters 203
Prefilters 203
Postfilters 203
Output Filters 204
Creating Filters 204
Registering a Filter at Run Time 205
Manually Loading a Filter 205
Automatically Loading a Filter 207
Filter #1: Remove HTML Comments 207
Filter #2: Benchmark Information 209
Filter #3: Compress Output with gzip 212
Filter #4: Search Engine Highlight 213
Summary 216

Chapter 12: Internationalization 217
Translation Infrastructure: Gettext 217
Configuring PHP with Gettext 218
Simple PHP Example 218
Setting Up the Gettext Files 219
Using Gettext with Smarty 222
Generating a PO File 225
Advanced Features of Smarty Gettext 227
Summary 229

Index 231

viii

Download at Boykma.Com

Preface

Smarty is a powerful templating tool that can breathe new life into PHP programming, and solve
many of the difficulties PHP programmers face on non-trivial projects.

This book will take you through the Smarty basics step by step, showing you how to realize the
benefits from this product. But this is no "hello world" tutorial; the book also covers advanced
Smarty topics crucial to large-scale web development: performance, internationalization,
customization, and so on.

Smarty is an established engine with a proven track record for making development and design
easier and more elegant. Whether you're just starting with Smarty, or are looking for extra insights
on advanced features, this book will help you.

What This Book Covers
The first two chapters are an introduction to Smarty. The remaining chapters of the book are
divided into two main sections. Chapters 3-7 deal with Smarty template design, and are aimed
primarily at designers. The later chapters get more technical, showing how programmers can work
with Smarty and PHP to create complex, interactive and high performance applications. Here's
what each chapter covers:

Chapter 1 will ease you into the world of Smarty. Starting with an overview of what templating
systems are and why you use them, it goes on to consider Smarty specifically. Once that's covered,
you'll see how to install Smarty so you're ready to begin your Smarty development.

Chapter 2 discusses how Smarty can make projects easier for programmers and designers, reduce
the time taken on programming and maintenance, and bring harmony to the fraught relationship
between designers and programmers. You'll then see how to start your first n-tier Smarty project.

Chapter 3 is a designer's overview of Smarty, explaining the key concepts and how designers can
create versatile and attractive templates and layouts.

Chapter 4 looks at templates in detail, showing how values pass into templates and how to use
them in applications such as calendars, database-backed reports, email newsletters and more.

Chapter 5 covers more advanced ways to work with templates, including how to play with
variables right in the template using modifiers.

Chapter 6 delves into the programming side of Smarty. There are many powerful functions that
designers can use to make Smarty development easier and more productive. This chapter
introduces the most useful of these, and provides practical examples of functions in action.

With all the added power in the designer's hands, there are bound to be mistakes occasionally.

Download at Boykma.Com

Preface

Chapter 7 will introduce you to methods for debugging your Smarty templates, so that you'll be
able to find why the wrong values are being displayed, or that pesky extra <td> tag is ruining
your layout.

Chapter 8 starts with more technical aspects of Smarty. You will see how built-in variables and
methods bring added functionality to your PHP code, with very little extra work.

Chapter 9 looks at how Smarty can make the code itself faster. This in-depth look at Smarty's
caching and performance features, and how to optimize your code for them, will enable you to
write very scalable and fast applications with Smarty.

Chapter 10 pushes Smarty even further, showing how to extend its capabilities with downloadable
plug-ins, and even showing how to write your own.

Chapter 11 takes a detailed look at filters, which are a special kind of plug-in.

Chapter 12 concludes the book with a look at how to make your website available in different
locales and languages using Smarty's internationalization features.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can include other
contexts through the use of the include directive."

A block of code will be set as follows:
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;
$smarty->caching = 1;
$smarty->display('example2.tpl');
?>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items will be made bold:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;
$smarty->caching = 1;
$smarty->display('example2.tpl');
?>

Any command-line input and output is written as follows:
$ xgettext -o smartybook.po -n *.php

New terms and important words are introduced in a bold-type font. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "clicking the Next
button moves you to the next screen".

Warnings or important notes appear in a box like this.

2

Download at Boykma.Com

Preface

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about this book, what
you liked or may have disliked. Reader feedback is important for us to develop titles that you
really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, making sure to
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or contributing
to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get
the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles to download
any example code or extra resources for this book. The files available for download will then
be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes do happen. If
you find a mistake in one of our books—maybe a mistake in text or code—we would be grateful if
you would report this to us. By doing this you can save other readers from frustration, and help to
improve subsequent versions of this book. If you find any errata, report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the Submit Errata link, and
entering the details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with some aspect of
the book, and we will do our best to address it.

 3

Download at Boykma.Com

Download at Boykma.Com

1
Introduction to Smarty

Today, websites are past the level of presenting summary and contact data for companies and
projects. With the evolution of the Internet, most websites are now stand-alone businesses rather
than summary presentations of companies. More than that, complex applications' developers have
embraced the idea of using websites as interfaces for their software.

For more than ten years, PHP has been one of the best choices for web developers being the most
complete open-source web programming language. With growth of the complexity of PHP
applications, a new problem that was raised was, how to separate programmers' code (PHP) from
designers' code (HTML), or better phrased, how to separate the content from presentation.

Smarty, a PHP templating system, was born to solve this problem.

Templating Systems
The basic functionality of a templating system is introducing a way of separating presentation
from content with very little interaction between programmers and designers. For example, the
design of a website may look like this:

Download at Boykma.Com

Introduction to Smarty

 6

The designers build the face of the website with pictures, text styles, tables, and so on. They build
templates for how to arrange the content in each page.

The only information the designers need is how the site should look and whether they need to
layout content like news, products, jokes, and so on.

On the other hand, programmers code the application using PHP to do data manipulation (business
logic). They are not interested in how the website looks (colors, pictures, text styles) or where the
content is laid out on the page. All they need to do is pass the content to the templates using
variable names they agree upon with the designers.

This is roughly how template systems work. Starting from this basic functionality, every template
system has a set of features that makes it easier for both designers and programmers if they are
well documented in the template system they use.

This book is intended to show you how to use all the features offered by Smarty in the optimum way.

Why Use a Templating System?
Building a website is similar to creating software. It can be done by building it from scratch, just
starting to write code to see what you can come up with at the end and solving problems on the
way; or it can be done by differentiating the project's components into separate layers and building
the website taking these layers into consideration. This is called multi-tier or multi-level software
architecture. If the website is a small one containing only a few lines of PHP code, the first option
might work. Just create a few tables in a database, start coding with PHP, maybe create a few
banners, generate a few tables and debug every step. People like it this way—fast and easy.

When it comes to more complicated web-based projects such as web portals, e-commerce sites,
ERP systems, and so on, the first option may work but in most cases it can very difficult to
achieve anything by coding away. Besides, with the market being so crowded with web projects,
in order for your website to stand a chance, you have to have a great layout which is appropriate
for the type of project you are building and of course, stable code tested in all situations. That's
why people involved in building websites specialize either in designing great layouts (web
designers), or in programming very well (web programmers). Not often will you see a good web
programmer creating great designs, or a good web designer writing good, bug-free code.

A software company that creates websites usually has a design department and a programming
department, and most medium to large web projects always have a programmer as well as a
designer working on them.

Programmers have different ways of coding applications and if they use only PHP without a template
engine, the designer will need to be familiar with every programmer's way of arranging the code,
naming variables, and so on. Also, the programmer will need to understand the designer's templates
and generate the code to print HTML code from PHP where the designer wants it.

Let's take the following example:
for ($col = 1; $col < $i; $col++) {
 print "<tr> <td> $procesid[$col]</td> <td>$data[$col] </td>
<td>$value[$col]</td> </tr>"; }

Download at Boykma.Com

Chapter 1

This is PHP code that prints the values of three arrays in a table. Even a simple example like this
one is hard to read and to arrange in a web page exactly as desired.

With Smarty, the PHP syntax doesn't contain print. Instead, the programmer passes these arrays to
the designer by assigning them to Smarty templates. Then it's the designer's job to make them look
good in the web page without worrying about the PHP code. This is one big benefit about using
Smarty, and we will learn in this book how this is done.

The Smartness of Smarty
Smarty allows designers and programmers to interoperate more effectively and not worry about
each other's work. The designer builds the templates for the web page layout and extracts the data
from the PHP files that the programmer has created. The programmer passes data to the templates
without having to generate HTML code. This way, everyone is happy and more efficient because
they all do the job they are good at.

Let's think about an e-commerce site that sells laptop computers. The manufacturer's name, the
model number, characteristics, and price are content elements that will be stored in a database and
displayed to the visitor.

Smarty makes the job of the designer as well as the programmer very easy. The key tasks
performed by them can be listed as follows.

The Programmer's tasks:

• Extract database elements with a simple query on the database.
• Validate and manipulate the data by performing business logic on it.
• If needed, change the data access methods and the business logic without interfering

with the designer's work. For example, the whole system could migrate from
MySQL to PostgreSQL without the designer making a single change.

The Designer's tasks:

• Create HTML designs without affecting or jeopardizing the programmers PHP code.
The designer only needs to be concerned with placing the content elements that the
programmer has agreed to provide.

• Make changes to the design without consulting or interfering with the
programmer's work.

• Stop worrying about technical changes to the site breaking the way that the site
appears to viewers.

In the above example, we see that tasks are assigned to people involved in the project depending
on the parts they are working on—presentation, business, and data access.

Later in this chapter we'll have a look at the process of building software applications, including
websites, using multi-tier architecture.

 7

Download at Boykma.Com

Introduction to Smarty

 8

Smarty Alternatives
For most people who need a PHP templating system, Smarty is the natural choice mainly because
of its popularity. As you probably know, Smarty is not the only PHP template engine in the
market, but it is the most complete and reliable one.

From the variety of other PHP template engines, we would mention the following:

• PHP Savant: http://phpsavant.com/yawiki/
• PHPlib: http://phplib.sourceforge.net/
• Yats: http://yats.sourceforge.net/
• FastTemplate: http://www.thewebmasters.net/php/FastTemplate.pHTML
• SimpleTemplate: http://simplet.sourceforge.net/
• Yapter: http://yapter.sourceforge.net/
• patTemplate: http://www.php-tools.de/site.php?file=/patTemplate/

overview.xml

Most of these PHP templating systems have a few advantages like speed and ease of use, mainly
because they are not as complex as Smarty. However Smarty has more features than most of its
competitors and it can be customized to be pretty fast.

In my opinion, the true competitor of Smarty is PHP Savant, which is a powerful but lightweight
object-oriented template system for PHP. Savant includes a lot of Smarty's features.

However, there is one big difference between Smarty and Savant that can be either an advantage
or a big disadvantage for Savant, depending on which point of view you are looking at. The
difference is that templates in Savant are written in PHP and not in another language like Smarty
introduces. This can be:

• An advantage for Savant—Designers work with PHP as a template language, they
don't have to learn another templating language.

• A disadvantage for Savant and a huge advantage for Smarty concerning security.
Savant doesn't compile the templates into PHP as the templates themselves are PHP
files. This way, designers have access to the full power of PHP. If the designer is not
a trusted one Savant is out of the question and Smarty is the answer.

In most cases, designers are not trusted to have access to the systems where web pages run,
therefore Smarty is still the best templating system for PHP. Savant is nice, but it almost totally
lacks security, while other template engines have only some parts of the functionality Smarty has.

A Rough Guide to the Software Design Process
The process of building a website involves a few steps that may vary from project to project, but
generally it is the same for most projects.

Download at Boykma.Com

http://phpsavant.com/yawiki/
http://phplib.sourceforge.net/
http://yats.sourceforge.net/
http://www.thewebmasters.net/php/FastTemplate.phtml
http://simplet.sourceforge.net/
http://www.php-tools.de/site.php?file=/patTemplate/overview.xml
http://www.php-tools.de/site.php?file=/patTemplate/overview.xml

Chapter 1

The first step is to establish the customer needs, on which you design a database. These needs are
later transcribed in a spoken agreement or preferably in a document. This document should
contain a description of the desired functionality of the software as well as the definition of the
database tables with explanations for every column. Once the customer agrees on this document
and maybe makes a few changes, you can start the actual process of building the website.

If you are your own customer this is not the case, otherwise it is my strong opinion that you should
do this. For one of my first projects, I skipped the document part and it led to a total fiasco. The
customer wanted more and more and did not want to pay more for it, but if the document had
existed he would have had no choice.

The next step is to create and show a few layouts to the customer. This is the designer's job. He
or she will work with the customer and come up with a design that the customer likes. After the
customer finalizes a design, the actual building of the website begins. When the project is finished,
the customer has a testing period in which a few modifications are made or some bugs cleared, and
it's done.

This is beautiful in theory, but in real life, programmers speak languages like PHP and SQL and
designers speak in HTML and CSS, and they often tend to have a few differences.

Working in Teams: Layers and Separation of Concerns
When human interactions might fail, it's preferable to separate the work as much as possible.
Multi-tier software architecture should do the job. The most commonly used architecture is one
with three tiers or layers. These are:

• Presentation Logic Layer
• Business Logic Layer
• Data Access Layer

Separating these layers in project development cycles allows you to achieve rapid application
development with project maintainability in mind.

In the three-tier architecture, the interaction between layers is shown in the following diagram:

 9

Download at Boykma.Com

Introduction to Smarty

 10

Starting from the bottom, at the Data Access Layer we find both the data and the ways to extract
the data that we want to show to the user. The Data Access Layer may contain:

• A database (MySQL, PostgreSQL, MSSQL, and so on) and the SQL language used
to extract data from the database

• Files that store data and PHP functions (or other languages) that parse the files
• Data acquisition software (for example, a thermometer on the parallel port)

Now that we've extracted the data, we need to manipulate it in order to get the results we need to
display. Data manipulation and validation is done at the Business Logic Layer, which may contain:

• Data validation based on the business plan (for example, list only in-stock items)
• Data manipulation according to the business plan (for example, discounts, stock

liquidations, and so on)
• Functions and formulas to calculate things like shipping expenses, and so on.

The Presentation Logic Layer is where the web page layout—how data from the Business Logic
Layer is arranged in the web page—is defined. This is done using:

• Web page templates
• Text/CSS styles
• Images, banners, and menu styles

Without a templating engine at the Presentation Logic Layer, we find HTML and PHP creating the
layout with pure HTML and generating HTML code from PHP. In this case, we cannot divide the
Presentation Logic and Business Logic layers into two separate layers, making the work of designers
and programmers very difficult for complex software projects. That's where Smarty comes in.

Smarty—The Ultimate Templating System for PHP
Now that we've decided to make our life easier by considering multi-tier architecture for our
website, we should take a look at what Smarty can do, as well as what it can't do for us.

Smarty is not built for separating HTML from PHP; instead, its primary goal is to separate the
application logic from presentation logic. If Smarty's goal was to separate PHP from HTML then
the presentation layer would contain no logic; but Smarty templates can contain logic, as long as it
is to be used for presentation only.

This may seem like it breaks the rules of rigid separation between layers and tasks, but there are
good practical reasons for it. A simple example would be an e-commerce site with products
displayed in four columns:

• Without Smarty: If our presentation layer doesn't contain logic, we need to modify
the business logic to retrieve the products in four arrays.

• With Smarty: Using logic in the templates, the programmer just passes the products
to the templates in a single array and the designer arranges the products in the page
as he or she desires.

Download at Boykma.Com

Chapter 1

Smarty offers an interface to pretty much all of PHP, so PHP can be included in the templates, but
it's recommended to leave most of PHP code at the business logic layer. Fortunately, Smarty's
logic is generally much simpler to use than PHP and designers do not need to become
programmers in order to incorporate presentation logic into their Smarty designs.

Is Smarty Fast?
Template systems introduce another level of processing in the application, so we might suspect
that Smarty applications will run slower than plain PHP equivalents. Basically, we have a new
pseudo-scripting language (the template engine's tags) inside our scripting language (PHP).

Smarty is extremely fast by doing what is called template compiling. That means that it reads the
templates, creates PHP scripts from them and includes the PHP files, resulting in a single PHP
script that is compiled by the PHP engine, which is pretty fast. The beauty of the process is that
the templates are parsed only once by Smarty, and only templates that are modified are compiled
again. This is done automatically by Smarty and results in a fast compilation done by the PHP
engine with very little overhead from Smarty.

If you are concerned about the performance of your site, Smarty has built-in caching support that
can speed things up, especially on websites that have content that is not modified very often. You
can cache all the content of a web page or only some of it and you can specify for how long
Smarty should keep the content cached. This will be explained in more detail in Chapter 9.

Since Smarty does template compiling resulting in a PHP script, there is no reason why we should
not use a PHP compiler cache solution like PHP Accelerator or Zend Cache.

PHP Accelerator and Zend Cache have no problem with Smarty's output and cache the PHP
scripts produced by Smarty very well, so if our main concern is performance we should use one of
these caching solutions combined with Smarty's built-in caching support.

Is Smarty Secure?
We concluded that Smarty is fast, but we need to know about its security, which according to me
is most important for any website.

By default, when using Smarty you are theoretically as secure as you are when using only PHP.
This means that by using Smarty you can't be less secure than using PHP only; but Smarty has
some features to improve security in case this is needed.

When a site is built by a programmer working with a designer without using Smarty, the designer
has access to the application and can modify all the PHP scripts. This is not good for security
because a designer with bad intentions can breach the security of the system very easily when he
or she has all the power of PHP in his or her hands.

Smarty comes with some built-in security features for situations where unreliable parties edit
templates. When security is set on templates, a designer who modifies templates via an unsecured
connection like FTP is unlikely to gain access in the system.

 11

Download at Boykma.Com

Introduction to Smarty

 12

Using Smarty security features, you can:

• Allow or deny usage of PHP code in the templates
• Allow only a set of PHP functions as variable modifiers
• Restrict the folders from which templates can be included
• Restrict the folders from which local files can be fetched by templates

My strong advice is to always think about security. Think about having a database with credit card
details and your designer including unsafe PHP code in one web page. This would result in a
disaster for your business.

Smarty's Main Features
Smarty offers both designers and programmers tools to optimize their work. Reading this entire
book you will find out about all these wonderful features and will see how great Smarty is. Let's
preview some of these features and look at the reasons why they should or should not be used.

Variable Modifiers
When displaying content on a website, you might want to change some of it depending on the time
or visitor's origin. For example, we might want to show a date in different formats. Using Smarty,
there's no need for the programmer's intervention for this. He or she will just pass the date in the
proper variable to the template, and the designer can format the date however he or she desires.

Also, the designer can upper-case or lower-case a variable, truncate a text block, add spaces
between characters, and so on and it's all done at display-time with Smarty.

Think about displaying a product category as a small title in uppercase and with spaces between
the word's characters (for example, 'C A R S'). In the database, the corresponding column contains
the word 'cars'. With Smarty you don't have to ask the programmer to change it to 'C A R S'. When
he or she passes the variable to the template, you can do that with proper variable modifiers at
display-time, and again, if you want to modify the way you display the product category later (for
example, 'Cars'), this doesn't require the programmer's intervention.

You will learn more about variable modifiers in Chapter 5.

Template Functions
While going through Smarty's syntax you will discover another great thing about Smarty—
Template Functions. Think about designing a large form with many HTML dropdowns. The
old-fashioned way to do this is to write tags for every drop-down menu. With Smarty, you can
simply write a function for dropdowns and call it every time you need to display one, making
things simpler and faster. This was an easy example, but you can save a lot of time writing
functions for displaying content in manners that you repeat frequently.

You will learn more about template functions in Chapter 6.

Download at Boykma.Com

Chapter 1

Debugging
At every step of building a software application, programmers and designers need debugging to
easily correct their work.

Think how much time you can lose if you misspell a variable and don't have debugging tools. In
my experience as a programmer, that's the worst scenario, even worse than having mistakes in
your algorithm.

Even if you can debug with PHP, Smarty provides a debugging console for correcting
Smarty-related errors. This is a very powerful debugging tool, as you are informed of all the
included templates, assigned variables and configuration file variables for the current template.

With Smarty you can modify the format of the debugging console, so you can highlight the things
you find important in debugging. In addition, you can dump the output of the debugging console
to the page using a Smarty function in the template, but since Smarty's functions are executed at
run time, you can only see the variables involved not the templates included.

You will learn more about debugging with Smarty in Chapter 7.

Plug-ins
One very important thing for a business that develops software is the possibility to reuse code.
This saves time and money when new projects are built that contain functionality related to other
projects created before, and this is what really makes a software business profitable. Using code
from one application in another with copy and paste requires modification of variables, function
names, retesting and careful integration with the new application, but is faster rather than rewriting
the piece of code.

However, there is a better method for reusing code—using Plug-ins. When building a site,
identify functionalities that can be reused even in the same project and create them as plug-ins.
This way, after building a few sites, you will have a portfolio of plug-ins that run well and can be
included without modifications in any new project saving a lot of time and work. For doing this,
we need to have plug-in support in the software that we use to build our project.

Smarty has a plug-in architecture that is used for most of its customizable functionality. With
Smarty, you can write plug-ins for functions, compiler functions, block functions, modifiers,
resources, inserts, prefilters, postfilters, and output filters.

A lot of software out there with plug-in architecture loads all plug-ins before compiling. This is not
necessarily wrong, but Smarty's designers kept performance in mind and made the plug-ins load only
when they are invoked in a template. More than that, a plug-in invoked once in a template is only
loaded once, even if there are more instances of Smarty requesting the same plug-in.

For example, when creating an e-commerce site, you can create plug-ins for the shopping basket
functionality or filters for currency conversion that you can use later in other e-commerce projects
you build, without having to write the same code again but being paid similar amounts of money.

You will learn more about plug-ins in Chapter 10.

 13

Download at Boykma.Com

Introduction to Smarty

 14

Filters
Disciplined designers may write a lot of comments in their templates, resulting in a big file after
compilation. Smarty's developers thought about this and included a set of filters to solve this problem.
Smarty has prefilters, which are PHP functions that the templates are run through before they are
compiled. With prefilters you can modify anything in the templates before template compilation.
For example, if you want to remove all the comments you can do that very easily using a prefilter.

However, if you want to add some comments to the compiled templates you can do that with
postfilters. Smarty's postfilters are PHP functions that the templates are run through after they
are compiled.

You can also filter out the content of a template by using output filters, which are PHP functions
used for filtering the output of a template when it is executed, for example replacing banned words
with *, hiding email addresses, and so on. With these powerful filters, the programmer has
complete control over the templates.

You will learn more about prefilters, postfilters, and output filters in Chapter 11.

Smarty Internals
From the designer's point of view, Smarty is a new simple and powerful scripting language that
can be used together with HTML to simplify the work with the programmer. Also, the new
scripting language that Smarty introduces to designers offers them ways to simplify their work.

A very eloquent example to my previous statement would be the following syntax:
<select name="Employee">
 {HTML_options options=$names}
</select>

The first and last lines are HTML but the line in the middle is Smarty. This line creates select
options with values in the $names array that is received from the programmer. In this way, the
designer only has to ask the programmer to pass employee names in an array named $names
(minimum interaction). Instead of writing <option></option> a lot of times, the designer uses a
Smarty function that simplifies his or her work.

Instead of placing the above example in an HTML file, the designer places it in a file with the
.tpl extension and tells the programmer the full name of the template (.tpl) file.

This book has a section called Smarty for Designers in which designers will learn this new
scripting language with useful examples, tips, and tricks from the authors' experience.

From the programmer's point of view, Smarty is a large PHP class with variables and methods.
The name of the class is Smarty, so to assign a Smarty class variable, the programmer must do:

$smarty = new Smarty;

The Smarty class offers programmers more efficient ways of interacting with designers. For
example, say the designer requested all employee names in a variable named $names. After
extracting the names from the database in an array, the programmer passes these to the designer.
This can be done by simply adding:

$smarty->assign('names',$names_array);

Download at Boykma.Com

Chapter 1

For the programmer, one of the best things about Smarty is that there's no need to have HTML
code in the PHP files. HTML code is in the .tpl files which are displayed using one of the Smarty
class methods:

$smarty->display("index.tpl");

The second section of this book is called Smarty for Programmers. Reading this section,
programmers will learn about the Smarty class and how to use it in the best way.

Installing and Configuring Smarty
Smarty is distributed under the GNU Lesser General Public License, which is the successor for the
GNU Library General Public License. The difference between the Lesser GPL and the old Library
GPL is that the software is less protected in the Lesser GPL, meaning that the libraries distributed
under this license are free software and can be used to create commercial software. The old Library
GPL allows you to use the software distributed under its license only to create free software.

The point is that Smarty is a free tool, and we can create commercial software using Smarty
without paying for it.

If you want to make sure you are 100% legal, you can read the entire Lesser General Public
License at http://www.gnu.org/copyleft/lesser.html.

Step 1: Obtaining Smarty
You can download the latest stable Smarty source code from Smarty's website at
http://smarty.php.net/download.php. Always make sure to download the latest release as it
contains bug fixes for all the previous versions.

Smarty is, in fact, a library for PHP and its requirements are very simple: a web server with PHP
4.0.6 or later. Apache can be used as a web server since it's the most popular choice, but it's not
the only one. Instructions on installing Apache can be found at http://www.apache.org.

After downloading Smarty from the web server and uncompressing the archive, we have a folder
with the current Smarty distribution. In the distribution root you will find a folder named libs,
which contains the following files and folders:

• smarty.class.php

• smarty_Compiler.class.php

• config_File.class.php

• debug.tpl

• \internals

• \plug-ins

All these files are needed to run Smarty applications and the PHP files are not to be edited.

 15

Download at Boykma.Com

http://www.gnu.org/copyleft/lesser.html
http://smarty.php.net/download.php

Introduction to Smarty

 16

Step 2: Configure PHP to Find the Smarty Libraries
The simple method of installing Smarty is to add the libs folder path to the include path in the
php.ini file.

On Windows
A very simple but effective way to configure Smarty would be to first create a folder, say mycode
in the document root of your Apache installation. Next, copy the libs folder from the Smarty
distribution to the mycode folder (for example, C:\apache\htdocs\mycode\libs\).

After this, you need to edit the php.ini file and add include_path = ".;C:\apache\htdocs\
mycode\libs\" where C:\apache\htdocs\mycode\libs\ represents the location of your
libs folder.

On Linux
For example, let's say you've extracted the distribution of Smarty you downloaded in
/usr/local/Smarty.

Just edit the php.ini file and add include_path = ".:/usr/local/Smarty/libs" and it's all set.
You can also copy the libs folder to any location of the include_path in php.ini if you don't
want to edit the file.

This is the easiest way to install Smarty. The point is that you need to load the Smarty.class.php
file in every PHP file that uses Smarty templates, so if you have it in one folder of the PHP include
path, you can create a Smarty instance for it by:

<?php
require('Smarty.class.php');
$smarty = new Smarty;
?>

After setting everything up, you have to change the permission of your templates_c folder, which
resides in your script path. That means your code and the templates_c folder must remain in the
same directory. Now using FTP just change the permissions of your templates_c folder to 777
(rwxrwxrwx).

You can perform this action using the following shell command:
chmod –R 0777 templates_c

An Alternative to Step 2: Using Smarty without Having Full
Access to the System
If you don't have access to modify the php.ini file or to copy Smarty libs in one of the folders of
the php include_path, you can still use Smarty by setting the Smarty libs directory in the PHP
files that use Smarty.

Smarty uses a PHP constant called SMARTY_DIR, which doesn't need to be set in the first case when
you edit the php.ini file to include the Smarty libs. However, you can manually set the
SMARTY_DIR to point to the same path as the Smarty libs.

Download at Boykma.Com

Chapter 1

• For Windows:
<?php
define('SMARTY_DIR', 'C:\apache\htdocs\mycode\libs\);
require(SMARTY_DIR . 'Smarty.class.php');
$smarty = new Smarty;
?>

• For Linux:
<?php
define('SMARTY_DIR', '/usr/local/Smarty/libs');
require(SMARTY_DIR . 'Smarty.class.php');
$smarty = new Smarty;
?>

Note that since there are so many ways of using Smarty. In this book, we will assume that
you copied the libs folder from Smarty's distribution root to the mycode folder within
your Apache document root and added its location to the php.ini file. If you are using
Linux, we also assume that you have changed the permissions of the templates_c folder
to 777 or rwxrwxrwx.

Step 3: Set Up Smarty for Your Application
After we are sure that we can find the smarty.class.php file, we need to set up the folders for
our application. Every Smarty application needs four folders, which are named by default
templates, templates_c, configs, and cache.

Each of these folders can be defined by the Smarty class proprieties $template_dir, $compile_dir,
$config_dir, and $cache_dir. Every Smarty application should have its own folders.

For Linux, Smarty needs write access to $compile_dir and $cache_dir, so we have to allow the
web server user write access to these folders. Look at the httpd.conf (Apache web server
configuration) file and see the user and group used to run Apache. Usually the user and group is
nobody, so I will use it in my example. Let's say we have the document root of our web server in
/www/htdocs. We need to set the file permissions of /www/htdocs/templates_c and
/www/htdocs/cache to allow write access for user nobody.

chown nobody:nobody /www/htdocs/templates_c
chown nobody:nobody /www/htdocs/cache
chmod 770 /www/hdocs/templates_c
chmod 770 /www/htdocs/cache

Step 4: Verifying the Installation
To make sure the installation works, copy the demo folder from the Smarty distribution root to the
document root of your web server (for example, c:\Apache2\htdocs), edit the index.php file to
make sure you have require('smarty.class.php'); and type http://localhost/demo/
index.php in your web browser. You should see a demo page with some of Smarty's capabilities
and the debugging console. Make sure your browser allows pop-ups.

 17

Download at Boykma.Com

http://localhost/demo/index.php
http://localhost/demo/index.php

Introduction to Smarty

Smarty Development Versions on CVS
By the way, if you want to play with features in development for future versions of Smarty, then the
PHP CVS server hosts the latest version of Smarty (the unstable one) and most of the old releases.
CVS can be downloaded from http://ccvs.cvshome.org/servlets/ProjectDocumentList.

To download Smarty from the PHP CVS server, first you have to login into the server with
the command:
cvs -d :pserver:cvsread@cvs.php.net:/repository login

using phpfi as the password.

To download the current Smarty tree just type:
cvs -d :pserver:cvsread@cvs.php.net:/repository co smarty

or any stable version of Smarty by using the following command:
cvs -d :pserver:cvsread@cvs.php.net:/repository co -r smarty_X_Y_Z smarty

where X_Y_Z is the corresponding version number, for instance using Smarty_2_6_10 in the
previous command line will download Smarty release 2.6.10 in the smarty folder.

 18

Download at Boykma.Com

https://ccvs.cvshome.org/servlets/ProjectDocumentList

Chapter 1

Note that using the current Smarty distribution from the PHP CVS server in production is
not recommended at all. It is an unstable version used for development and if you want to
use Smarty for building websites you should use the latest stable version.

Upgrading a Smarty Site
Smarty is backward compatible, so when you need to upgrade a Smarty site all you need to do is:

• Get the latest Smarty distribution as described in Step 1 earlier.
• Replace the old content of the libs folder where you installed it with the content of

the libs from the new distribution's root.
• Make sure you don't have the old file Smarty.class.php in any other PHP include path.

Summary
In this chapter, you learned that using multi-tier software architecture makes our life easier.
Smarty's objective is to separate the Business Logic from the Application Logic. Smarty is fast
and secure because of the way templates are parsed, which is template compiling. It has
prefilters, postfilters, and output filters which give the programmer complete control of template
output and content. By creating resource handles, you can use templates from any source that you
can access with PHP. Smarty has a plug-in architecture so you can use plug-ins for most of its
functionality. It also includes a very powerful debugging tool. You also learned how to install
Smarty on Windows and Linux.

 19

Download at Boykma.Com

Download at Boykma.Com

 2
Smarty Site Architecture

It has been a long time since websites have moved on from being simple HTML pages with no
frames, no dynamic content, and only a few words about something. Nowadays, building a
competitive website is a challenging process for those involved, no different than building most
software applications.

Generally speaking, architecture is the fundamental organization of a system. Software
architecture consists of defining:

• Software elements for the application
• Relationships between elements
• Relationships between software elements and the environment
• The evolution of the application
• The principles that govern the application

In many ways, software architecture is just like building architecture. You must define the elements
used to build the building, how to attach them together, how the building will stand the environment
conditions, the order of putting one element over another, and how to use the building.

I know this book is intended to be a tutorial for Smarty, but in order to move deep into Smarty
you must understand the process of building a website. Defining architecture for the site gives
you a skeleton of the site, emphasizing a clear definition of the structure and the relationship
between the components used to fulfill the purpose of the website, and allows you to easily
manage your project's resources and timelines. Dividing your project into components allows
you to work with more programmers and more designers, gluing these components together at
the end of the project. Software architecture implements a clear separation of concerns at most
of the functionalities of the application.

In Chapter 1 we discussed using three-tier software architecture for most web projects and we saw
how it facilitates separation of the programmer's part from the designer's part. Let's look at
Separation of Concerns in detail.

Download at Boykma.Com

Smarty Site Architecture

 22

Separation of Concerns
The term was introduced by Professor E.W. Dijkstra in his book A Discipline of Programming
published in 1976 and became one of the most important principles in software engineering.

The concept states that any given problem involves a number of concerns, which should be
identified, separated and implemented as separately as possible. This concept promotes modular
design, as every feature of the application is written separately.

What Does Concern Mean?
Despite the fact that using Separation of Concerns is a commonly agreed necessity, there is no
clear definition of a concern. Generally speaking, a concern is a problem that a program tries to
solve. In a website some concerns can be sending emails, creating a shopping basket, creating
customer review functionality, and so on. A concern can be seen as a particular goal, concept, or
area of interest.

Procedural programming languages allow Separation of Concerns through functions or
procedures. In procedural programming, a concern can be modeled as program (functions along
with data structures) or as a function within a program.

In OOP (Object-Oriented Programming), separated concerns are modeled as objects and classes,
while AOP (Aspect-Oriented Programming) extends the concept with non-functional properties
like memory management, persistency, and synchronization.

While Smarty provides functions like procedural programming languages, the best way to separate
concerns using Smarty is to write plug-ins for all major functionalities of the site. Smarty plug-ins
are in fact functions that are loaded on demand, but it's a very useful technique to make your site
modular and for code reusability.

A Problem-Solving Perspective
The process of building a web page, or any software, is a process of finding a solution to meet the
requirements for the page (or software).

Requirements -> Website

This is the normal process of building a website. From a problem-solving perspective, this gets
translated to:

Requirements -> Solution

Requirements need to be transcribed into problems:
Requirements -> Problems -> Solution

In practice, analysts have to express the requirements in the right problems in order to find
appropriate solutions.

The solution can be defined as a set of abstractions with a set of relations among these
abstractions. Therefore, we can say that the solution is a union of two sets:

Solution = (Abstractions , Relations)

Download at Boykma.Com

Chapter 2

Thus, we can define a concern as being a solution abstraction that is relevant for a given problem.

Cross-cutting Concerns
Concerns that are not related to core functionality of the application, but are needed to run the
application are called cross-cutting concerns. In the problem-solving perspective, relations
between abstractions of the solution can help identify cross-cutting concerns.

For example, authentication, logging, and sending emails are the most used cross-cutting concerns
in software applications. Cross-cutting concerns must be identified for any application and
implemented in such a way that you can reuse the code without rewriting it.

Although you may be tempted to copy and paste, let's say the authentication code in many web
pages for the same site, it's more efficient to separate this concern and implement it such that it
can be accessed by all the modules. Isolating cross-cutting concerns is the goal of AOP
(Aspect-Oriented Programming).

PHP, being a structured programming language (like C for example) can separate concerns
through functions. However, you can identify cross-cutting concerns and code them as functions
in PHP scripts, then include them in the scripts you need.

Using Smarty, you can identify cross-cutting concerns and implement them as plug-ins. With this,
we can truly say, "Developing software using PHP and Smarty allows a clear implementation of
Separation of Concerns."

Roles Involved in Building and Maintaining a
Website
We are going to review the processes of building and maintaining websites from a project-management
point of view.

Firstly, we need a project manager. If there's no one qualified for the job, pick the most
experienced person in the team, or, if it's a solo show, you will be the project manager and the web
programmer. However, I will try to explain how a professional team works on the project.

The Customer is the one who establishes the requirements. Actually, requirements is not the
appropriate word to use here because it simply represents the customer's desires. Most customers
have no idea about the process or technologies in building a website, so they can only express
their desires or their needs. This is done at first in a friendly conversation with the project manager
who will give an approximate final price.

Analysts are the next to talk to the customer. They will discuss customer needs in more detail in
order to express the requirements in a more appropriate way. They also try to establish the
structure of the content so they can build a database. The analysts' job is concluded after they
come up with a document with the functionality of the site and the database tables and relations.

 23

Download at Boykma.Com

Smarty Site Architecture

 24

Since most websites are database interfaces, the core of the application needs to be very
well designed and implemented. Analysts play one of the most important parts, because a
complete analysis and a smart database design will guarantee more than 90% the success
of the site.

The Project Manager establishes timelines and prices for the project, and then signs a contract
with the customer if he or she agrees with the analysis, the timelines, and the budget. He or she
will assign functionalities to programmers and pick a designer.

The Designer creates a few layouts and shows them to the customer. He or she will agree with the
customer on the website design.

Meanwhile, the Programmers start coding the parts of the application they are assigned. They
work with the designer to establish the variables' names.

When the site is ready, the customer tests the functionality according to the analysis. This is
usually done on a testing platform. The project manager then must propose a hosting solution. If
it's an in-house hosting solution he or she must assign a System Administrator to handle the
installation, the security of the system, and remote tools for programmers and designers.

The website must contain tools for content administration. This way, the customer will manage the
content of the site him- or herself so there will be no further need for the programmers or designers
on this project, unless the customer decides he or she wants changes in business logic or in presentation.

Website maintenance will be the system administrator's responsibility.

Starting a Smarty Project
We are about to start a Smarty project right now, so I will try to explain a little about the process.
First of all, I will try to make the explanation as general as I can, but the project itself will be built
on Windows with Apache and PHP 5. If you want to work on Linux, you will have to change
some of the things that will follow.

The first step is to choose a text editor. To be honest, my favorite text editors are Notepad in
Windows and Joe in Linux, but you should use whatever text editor you feel most comfortable with.

This example will be a short one just to get acquainted with Smarty and the three-tier architecture.
We will build a website containing a short list of books by Packt.

Directory Structure
After we have installed Apache, PHP, and Smarty as described in Chapter 1, we need a document
root for our project. Let's create a folder, for example mycode, in the folder at which the
DocumentRoot directive found in the httpd.conf file of your Apache web server points.

Next, we need to create the templates, template compilation, configuration, and cache folders,
which by default are named templates, templates_c, configs, and cache. We will create these
in the mycode folder. The .php files will be stored in the mycode folder itself. We also need to copy
the libs folder in your Smarty installation to the mycode folder.

Download at Boykma.Com

Chapter 2

Securing our Smarty Project
In my experience, I have noticed that a lot of people who work with Smarty or other template
engines don't realize the importance of the fact that their code is intended to be for their eyes only.
While .php files are configured in Apache as applications and they are passed to the PHP
interpreter when accessed from the Web, templates file with the .tpl extension are not. In Linux,
chmod can do a good job with the Smarty folders, but it can cause problems when a designer
uploads the files via FTP or HTTP.

Since we named the Smarty folders like their defaults, if we put a file with the .tpl extension in
the templates folder (for example, index.tpl), if you write in your web browser address box
http://localhost/templates/index.tpl you can see the file with the actual code in it.

Since everything is done internally by Smarty and PHP, there is no need for the web user to access
files in any Smarty directory (even if the compilation directory contains PHP files, they are never
addressed directly from the Web). Considering these facts, I think that the best way to secure the
project is to deny everyone except the localhost access to Smarty folders from the Web.

The Data Access Layer
For this example, I took some information about four books from the Packt Publishing website
and stored them in a file. I also downloaded the book covers and stored them in a new folder
called images, which is within our mycode folder.

In the mycode folder, let's create a file named data.txt with the following information (the file is
available in the code download):

Title=> Building Websites with VB.NET and DotNetNuke 3.0
Image=> 1904811272.jpg
Author=> Daniel N. Egan
Description=> A practical guide to creating and maintaining your own website
with DotNetNuke, the free, open source evolution of Microsoft's IBuySpy Portal
Year=> 2005
Price=> 39.99

Title=> SSL VPN : Understanding, evaluating and planning secure, web-based
remote access
Image=> 1904811078.jpg
Author=> Joseph Steinberg, Tim Speed, Simon Jenner
Description=> A comprehensive overview of SSL VPN technologies and design
strategies
Year=> 2005
Price=> 49.99

Title=> Windows Server 2003 Active Directory Design and Implementation=>
Creating, Migrating, and Merging Networks
Image=> 1904811086.jpg
Author=> John Savill
Description=> A unique, scenario-based approach to selecting and implementing
the best Active Directory design for your environment
Year=> 2005
Price=> 59.99

Title=> Building Websites with the ASP.NET Community Starter Kit
Image=> 1904811000.jpg
Author=> Cristian Darie, K. Scott Allen

 25

Download at Boykma.Com

Smarty Site Architecture

 26

Description=> A comprehensive guide to understanding, implementing, and
extending the powerful and freely available application from Microsoft
Year=> 2004
Price=> 44.99

We will use a file to store our data to show that any change in the way we store data will not affect
the business logic layer and the presentation layer.

Next step is to retrieve the data from data.txt. For this, we create a file named get_data.php in
the mycode folder with the following content:

<?php

class books {

//public

public $title = array();
public $image = array();
public $author = array();
public $description = array();
public $year = array ();
public $price = array();

// private

private $filename = "data.txt";

//class constructor

function __construct()
{

 //get the lines as an array

 $i=-1;
 $lines = file($this->filename);

// strip "\n" at the end of each array
// get each variable in an array

 foreach ($lines as $line) {

 if (strlen($line) > 2) {

 $line = rtrim($line);

 list($what, $content) = explode("=> ", $line);

 if ($what == "Title") {
 $i++;
 $this->title[$i]=$content;
 }
 elseif ($what == "Image") {
 $this->image[$i]=$content;
 }
 elseif ($what == "Author") {
 $this->author[$i]=$content;
 }
 elseif ($what == "Description") {
 $this->description[$i]=$content;
 }
 elseif ($what == "Year") {
 $this->year[$i]=$content;
 }
 elseif ($what == "Price") {
 $this->price[$i]=$content;

Download at Boykma.Com

Chapter 2

 };
 };
 };

} // end constructor

} // end GetData

How it Works
The class books has the public variables $title, $image, $author, $description, $year, and
$price as arrays, and a private variable called $filename, which stores the name and path of our
data file.

When the class is constructed, the constructor function will first read every line from the data file
into an array of strings called $lines. For each string representing a line in the data file that has a
length bigger than two (so avoiding the blank lines), we will strip the blanks and the end-of-line
characters at the end of the string with the rtrim() function.

Then, we will separate the string in two different strings, one named $what and other $content,
the first one representing what's on the left of the => characters and the second one what's on the
right. After that, we will compare the content of the $what variable to store the data from the
$content variable in one of the public arrays of the class (for example, $title[0] will be
Building Websites with VB.NET and DotNetNuke 3.0).

At the Data Access Layer we retrieve the data from the database. In this case, the
database is a file. Later, if we want to use a MySQL database with a table named books
with the columns title, image, author, description, year, and price, the constructor
of the class will get the public variables with a SELECT statement (for example, T SELECT

title, image, author, description, year, price FROM books).

The Business Logic Layer
After the data is retrieved at the Data Access Layer, the Business Logic Layer is responsible for
data validation from the business point of view. In this example, we will apply a ten percent
discount for the books published in 2005 and a twenty percent discount for books published in
2004. For this, we need to create a file in the mycode folder named books.php as shown:

<?php

class bo_books {

//public

public $title = array();
public $image = array();
public $author = array();
public $description = array();
public $year = array ();
public $price = array();
public $discount = array();
public $discounted = array();

//private

protected $DataObject;

 27

Download at Boykma.Com

Smarty Site Architecture

 28

function __construct()
 {

 $this->DataObject = new books();

 }

public function apply_discount()
 {

 $this->title = $this->DataObject->title;
 $this->image = $this->DataObject->image;
 $this->author = $this->DataObject->author;
 $this->description = $this->DataObject->description;
 $this->year = $this->DataObject->year;
 $this->price = $this->DataObject->price;

 $j = 0;

 foreach($this->year as $year)
 {

 if ($this->year[$j] == '2004')
 $this->discount[$j] = '20';

 elseif ($this->year[$j] == '2005')
 $this->discount[$j] = '10';

 $this->discounted[$j] = intval($this->price[$j] *
 (100 - $this->discount[$j])) / 100 ;
 $j++;

 };

 } // end function apply_discount()

} // end class bo_books

How it Works
The class bo_books is used to pass the data to the Presentation Layer after business logic is used
on the data retrieved at the Data Access Layer. It has the same public variables as the books class
from get_data.php plus arrays called $discount and $discounted, which represent the discount
applied for each book and the price after the discount. The class has a private variable called
$DataObject in which the data is retrieved from the Data Access Layer.

The constructor initializes the $DataObject variable as a new books class object and will have the
public variables retrieved from the data file.

The public function apply_discount() will copy the content of each public variable from the
$DataObject class into the public variables of the current class. After that, it will compare
each book's year with the values 2004 and 2005 and assign a discount for each book in the array
named $discount.

The discounted price is calculated in the $discounted array:
 $this->discounted[$j] = intval($this->price[$j] *
 (100 - $this->discount[$j])) / 100 ;

Download at Boykma.Com

Chapter 2

The Presentation Layer
First, we need to pass the variables from the Business Logic Layer to the Presentation Layer. In
the mycode folder, create a file named index.php like this:

<?php

require("libs/Smarty.class.php");
require_once("get_data.php");
require_once("books.php");

$book = new bo_books();
$book->apply_discount();

$smarty = new Smarty;

$smarty->assign("book",$book);

$smarty->display('index.tpl');

?>

Next, we will create an index.tpl file in the templates folder, like this:
<html>
<head> <title> Site Architecture Example </title>
</head>

<body>

<table border="0" width="100%">
 <tr>
 <td align="left">

 </td>
 <td>
 <h1> Chapter 2 Example </h1>
 </td>
 </tr>
</table>

Here are the books in a two-column table :

<table border="1" width="100%">

{section name=tbl loop=$book->title}

 {if %tbl.index% is not odd}

 <tr>
 {/if}

 <td align="left">
 <table>
 <tr>
 <td>
 image[tbl]}" width="220">
 </td>

 29

Download at Boykma.Com

Smarty Site Architecture

 30

 <td valign="top">
 {$book->title[tbl]}

 {$book->author[tbl]}

 {$book->description[tbl]}

 Year: {$book->year[tbl]}

 Cover Price: <s>${$book->price[tbl]}</s>

 Our Price: ${$book->discounted[tbl]}
 save {$book->discount[tbl]} %
 </td>
 </tr>
 </table>
 </td>

 {if %tbl.index% is odd}

 </tr>
 {/if}

{/section}

</table>

</body>

</html>

How it Works
Being the index file, index.php will be the PHP script that will be executed first. It will first load
the Smarty library using require("libs/Smarty.class.php"); and then load the other PHP files
described above. This will load the code of the books and bo_books classes.

Next, we create a variable named $book of bo_books class type: $book = new bo_books(). The
constructor of bo_books will load the data from the Data Access Layer in its private $DataObject
variable. Next, we want to have all the data about the books from the Data Access Layer in our
$book variable and apply the discounts from the Business Logic Layer. This is done by the
apply_discount() public function of the bo_books class: $book->apply_discount().

Now we have all the data extracted from our data file at the Data Access Layer with logic
performed on it by the Business Logic Layer and we want to display it, so we pass the data to the
templates: $smarty->assign("book",$book);. Next we display the template index.tpl using
$smarty->display('index.tpl');.

The template index.tpl is a Smarty template, using which we display our data. It begins just like
an HTML file and may contain any HTML tags. At the top of the page we print the Packt logo with a
link to Packt's website, and the page title as a heading, all in a two-column table using HTML tags.

Next we create a section loop to generate a table's rows and columns and to print the content: {section
name=tbl loop=$book->title}. If the tbl.index is not odd we will begin a new row, then we print
our data, and if the tbl.index is odd, after we print the data we print the row's closing tag (</tr>).

In every cell of the table we print another table containing the book's image on the left and facts on
the right.

Download at Boykma.Com

Chapter 2

The Result
We have obtained a web page that looks like this:

At the centre of this project lies the database, which is a file in our case. This can be any type of
database and can be changed at any time.

Above the database there's the Data Access Layer, which consists in our example in the books
class contained in the get_data.php file. The class extracts the data from the database so that it
can be used by the Business Logic Layer.

The Business Logic Layer is responsible for data validation and manipulation from the business point
of view. In our example, the class bo_books gets the data from the Data Access Layer and applies a
discount of 10% for the books published in 2005 and a discount of 20% for the ones published in 2004.
If we want to change the discounts, all we need to do is modify the apply_discount() function of the
class, so all business logic is separated here from data access and presentation.

 31

Download at Boykma.Com

Smarty Site Architecture

 32

After our data is extracted from the database and passed through the Business Logic Layer, we
must create the presentation part of our project. This is done by creating templates and shows the
data just the way we want, independently from the way data gets extracted or any business logic is
performed on the data. In our example we see how Smarty supports looping with a small section
loop. We will see more looping techniques later in this book.

The purpose of this project was to get familiar with three-tier architecture and how to separate layers.

Summary
In this chapter, you learnt how using software architecture makes your life easier. We also looked
at what the Separation of Concerns concept is, why it is so widely used and how we should see the
Separation of Concerns from a problem-solving perspective. We also looked at the roles played by
various people involved in a Smarty project and each one's responsibilities. You learned how to
start a Smarty Project and about its folders and security. We also studied the various layers of a
smarty project:The Data Access Layer, the Business Logic Layer and the Presentation Layer. By
the end of this chapter you should have a small project with Smarty and PHP 5 that uses three-tier
software architecture.

Download at Boykma.Com

3
What Designers Need to Know

In the previous chapters you learned about the basic concepts and setting up of Smarty. As a
Smarty developer, you have to understand some basic procedures and know how. This chapter
will guide you through the necessary steps to kick start template designing. Before starting
template design, you should always be aware of the main objective of Smarty. Let me repeat again
for you that the main goal of Smarty is to separate the presentation layer from business logic. This
chapter will show you the best way to develop templates while keeping this goal in perspective,
and at the same time satisfying your programmers, helping you to co-operate with them,
minimizing their task, and increasing the reusability of your final output.

One more thing you should be aware of is that you shouldn't mix up identities. Most often, the
designers are to some extent programmers and vice versa. While designing you must totally forget
that you are also a programmer and look at things only from a designer's perspective. If you mix
up your identities, there will be a great risk of non-standard designs.

Development Team Problems: Common Scenarios
Do you remember those days when you hard coded your business logic into your HTML pages?
To some developers, this embedding capability brought an extra level of satisfaction. You
designed (let's read hard coded—we are still in your old days) a lot of pages for your extremely
beautiful site and delivered it to the customer. Only to be faced with problems when even a small
change needed to be made to the site. Now let's look at common problems faced during those days
by designers, managers, and developers, and their possible solutions (with and without Smarty):

• Designer's Problem:
o Problem: After using your solution for some days, the customer requires

a small change in site layout. The change is required within a very short
time and there is no way you can extend the deadline or avoid it.

o Solution without using Smarty: In this situation, you will go to your
desk, won't sleep for some nights and will change all those hard-coded
pages by manually modifying them one by one. Are you scared that
something similar might happen again? Undoubtedly, you are. Maybe
you could tackle it this time, but when you have hundreds of such
pages, it will be very different.

Download at Boykma.Com

What Designers Need to Know

 34

o Solution using Smarty: Open your Smarty templates, perform the
necessary change, and upload it to your server. You don't have to worry
about processed data and business logic. Moreover, you needn't worry
about searching through a lot of gibberish code and spending a lot of
time and effort changing it.

• Manager/Developer's Problem:
o Problem: You are the manager of this company. You need to modify

your existing site's appearance and suddenly you find that the
programmer who hard coded this site has quit a few days ago.

o Solution without using Smarty: You will hire another programmer
who will read the previous code, figure out the portions to change and
then make the changes. It may sound easy but actually, it's not. Reading
code written by another programmer is a very tough job. Furthermore,
if your previous programmer didn't document the coding, it will create
bigger complications.

o Solution using Smarty: Ask your Smarty template designer to perform
necessary changes and save it. There is a chance that you may not even
need to look at your inner business logic and codes.

Do these scenarios make any sense to you? Well, these two scenarios are enough to illustrate the
situation of a designer and a manager. Which one do you relate to? This chapter and the upcoming
chapters will help you to solve problems like these in a more effective way by using the Smarty
templating engine.

Roles of a Template Designer and a Programmer
There are at least two significant players in a web application development team. They are the
designers and coders. They each have distinct roles but must work together to make this web
application successful, easy to maintain, and easy to extend. Firstly, let's go through the detailed
role of a designer.

• Separate the presentation layer: As a designer, your primary job is to completely
separate the presentation code from your business logic. You must ensure that this
separation will be usable and optimized.

• Figure out fixed parts and dynamic parts: Before you start designing, you must
figure out which parts will be dynamic and which parts will be static.

• Figure out reusable parts and make best use of them: Separate your template into
components (like a header, navigation bar, body, footer, and so on) and ensure
integrity between them.

• Collaborate with programmers: See what parameters programmers give you and
how you can use them. If you need something more or find something that is lacking,
you should immediately inform them.

Download at Boykma.Com

Chapter 3

Design plug-ins and modifiers if necessary: If you are not familiar with extending
Smarty (though it's in some ways a programmer's job; but it may be considered as a
big plus point if you are familiar with it and will give you an extra facility), at least
inform the programmers in your team that you need a special functionality that could
be accomplished by plug-ins or modifiers.

•

The programmer's role is beyond the scope of this chapter. However, for the sake of simplicity
let's see the programmer's basic role.

• Implement business logics.
• Assign necessary data to variables and document it. Documenting is a best practice

and you should always maintain it.
• Work in close contact with designers and supply them with whatever they need.
• Develop plug-ins if needed.

Since you now have a clear understanding about your role as designer, let's go through every
important point you have to take care of.

Definitions and Concepts for Designers
Just opening your editor and writing Smarty tags with variables supplied by programmers will
never make you a top designer. As a designer, you should be familiar with these terms and
processes before you start.

Caching: This is the process of temporarily storing the output and using it from this storage when
necessary. Caching increases Smarty's performance greatly as it avoids extra calculation for a
Smarty template and thus reduces the script execution time. Caching gives Smarty an edge over
other template engines.

Optimization: This is the process of removing overload from your browser and allowing your
template to work well with minimal memory. Simply reducing the size of your page is not
optimization. You should also take care of extra images and extra HTML code for your design.
For example, the navigation bar is a part of website that hardly changes itself dynamically page by
page. Hence, you should leave it as a separate component and ask your programmer to cache it.

Stylesheet (Cascading Style Sheets or CSS): This is a language for formatting the output of
HTML tags. As a designer, you must have a strong grounding in stylesheets. In older days, people
used <table> to design their site. These days, they use <div> instead. With <div> and CSS you
have full control over the placement of objects and can design liquid layouts according to your
need. <div> and CSS give you maximum control over your website and increase the reusability of
your template components. In addition, optimized CSS upgrades your site for faster loading and
less bandwidth consumption. CSS also allows you to use shorthand style, which is an extra benefit.

Debugging: This is the process of eliminating the errors, bugs, and bad code that give a wrong
result. As a designer, you should be capable of debugging your templates. Smarty has its own debug
capability in the form of a debug console. While designing, you will realize that most errors occur
when your programmers supply you with a lot of data using nested arrays and you have to iterate

 35

Download at Boykma.Com

What Designers Need to Know

 36

through them to output a fantastic result. If any error occurs, you have to check and recheck your
template to find out where the error occurred. The Smarty debug console helps you to analyze
instantly what your programmers supplied you and identify the parameter(s) that caused the error.
Smarty lets you debug your template as intuitively and simply as possible.

JavaScript: You can embed JavaScript in your templates. However, for the sake of optimization,
separate the JavaScript into another file and link to that file with the <script> tag. This will
optimize your template and the browser will load this JavaScript file from cache and not from the
server. Take extra care while embedding JavaScript in your template to avoid compile-time bugs.

Object-Oriented Programming (OOP): As I have already mentioned, if you have some basic
programming knowledge, it will help you in template design. You may ask "How?" Well, Smarty is
a templating engine that allows your programmer to pass arrays and nested arrays, which you can
access in three styles, normal index style, associative style, or high-level object-oriented style.
However, that's not where your knowledge about OOP helps you. You will be surprised to know that
Smarty allows programmers to pass an entire object (a class as an object), which you can handle in
your template. The benefit of this is that you can access attributes and methods of this object inside
your template. You can even pass parameters from your template to that object.

Plug-ins and Modifiers: A designer must know what modifiers and plug-ins are. These are simple
functions that work with the Smarty engine as embedded objects. Smarty lacks some features in
order to maintain its simplicity and extensibility, but it gives you full control over extending it. If
you ever feel that you need to do some special processing with your variable, content, or the whole
template then you can ask the programmers to develop a plug-in or modifier to meet your
requirement. We will go through the detail of extending Smarty later in this book. Nevertheless,
let's understand what plug-ins and modifiers are. A plug-in is a special function that allows you to
modify a whole block of content inside a template or to add a complete new tag to your Smarty
engine. Modifiers are functions that simply modify the variable content.

Basic programming knowledge: Besides being a templating engine, Smarty is also a new
language for templating. It has all the key features of a programming language. Hence, Smarty is
not very easy and you should spend some studying it. If basic concepts of programming like logic
development, loops, conditional flow, and array manipulation are totally unknown to you, please
study them carefully. A template, unlike WYSIWYG HTML design, requires experience, regular
practice, and foresight.

Concept of Reusability and Components
Reusability is a common concept that a Smarty template designer can benefit from. Firstly, let's
see what reusability is. It is the process of designing a component or object in such a way that you
can use it repeatedly in different projects either as it is or with a simple modification. Here, by
components, we mean important, individual parts of your web page.

Download at Boykma.Com

Chapter 3

Let us assume you design a template that represents an entire page and contains a menu bar,
header, footer, body, banner rotator, calendar, news rotator, and so on. A template can contain
many components in a single page. However, this kind of template wouldn't be standard in the
context of modern web design style, and as such, is not optimized. The following code snippet is a
typical example of such a non-structured but working template:

<HTML>
 <body>
 {code for banner}
 {code for menu bar}
 {code for body} //inside this there are {code for news
 rotator} and {code for advertisement}
 {code for footer}
 </body>
</HTML>

Now let's design another page with a slight modification. You will again copy and paste most of
the page and change the <body> part, give your template to another designer in your team and tell
him or her to design a third page with a slight modification in the news rotator. He or she will have
to study your whole template and understand which portion of your template is responsible for
news rotation. If your template is filled with many business logic sections, it's a bit of a hassle for
him or her. How can you help your other programmers not to copy and paste every component in
their every template? Split them up into components. Design separate templates for each section
and integrate them in your final template. Look at the structure below:

{include your header template}
{include your menu bar template}
{include your body template}
{include your footer template}

Moreover, inside your body template just include your {news rotator template} and
{advertisement template}. What benefit do you get if you follow this style? Let's see.

• When you need something to be changed, just change the component. No need to
spend extra time on studying, and aligning the complete template code.

• More structured to understand.
• Each component is individually reusable. Suppose one of your co-developers needs

just the news rotator part; he or she can simply include your news rotator component.
• This will help you while designing by increasing concentration on each part.

These are more or less all the benefits, but the most important benefit is reusability. Don't
overlook component separation—it will help you and your team to save a lot of time while
modifying and extending your site.

 37

Download at Boykma.Com

What Designers Need to Know

The diagram above clearly illustrates how you can reuse your components in different templates.
Developer A developed a template that uses three components and Developer B developed a template
that uses four components. Both templates share two components between them. If there are a huge
number of templates, then this process will definitely save your many nights' sleep.

However, there is a pitfall in this style. If you follow this style, you need to assign only one person for a
single component. It's not a good practice to have more than one person designing a single component.

Splitting into Components
You already have some idea of splitting a web page into components. It will help if we take a
closer look before proceeding further. Let's see components in action. Here is a screenshot of the
Packt website.

 38

Download at Boykma.Com

Chapter 3

Assuming this is a sample page of your site, let's define which could be the components. Can you
figure out how many components we can divide the page into? Let's start one by one.

• Banner with embedded menu bar
• Left Navigation Panel

o A small navigation menu
o A search box with a newsletter subscription box
o News rotator

• Body
o General heading
o Recent book description rotator

• Right Panel
o Simple News rotator

• Footer

 39

Download at Boykma.Com

What Designers Need to Know

We can split the whole page into these components. Note that there are three news rotators in
the page: in the left panel, in the body (as a book description rotator), and in the right panel. Just
this single page reuses a news rotator component three times with a different look-and-feel
using CSS classes.

Let's look at a typical webpage and the components it usually contains:

The figure above shows you typical components that are commonly used in a webpage. Whenever
you plan to design a template, keep in mind that more or less every page uses these components. Let
me clarify content separation a bit more. Let us suppose you have a website where you sell items.

When you're deciding how to split your page into components, it's useful to think about
reusability. If you design a separate template for each item, then you can use that template every
time the item is required on another page. On the other hand, don't overdo your splitting into
components so small that you'll never make use of them on their own. Otherwise, you could end
up wasting a lot of time on splitting a template into hundreds of tiny components!

Let's go into depth: How should each component look? I am not going to discuss Smarty codes in
this chapter, rather pure HTML to show you the basic structure of each component.

If you prefer table-less design then design each component enclosed by the <div> object. We
already discussed in brief why table-less design is extensible for designers. If you prefer flexible
templating, do it table-less. However, if you use templates for pure reporting, then a table is
flexible to manage. Choose whatever suits you best.

 40

Download at Boykma.Com

Chapter 3

How to Design Table-less Layouts?
Table-less design gives you unlimited flexibility and reduces the HTML code on your page, but
requires in-depth knowledge of CSS. It saves a lot of time that you would otherwise spend on a
table and its cell alignment. In the next example, we will design a very basic table-less page
with the usual components.

This is your sample HTML without a table:
<body>
<div id="container">
<div id="head">
<div id="header"> <h1>Header</h1> </div>
</div>
<div id="menubar_horizontal"> Menubar </div>
<div id="content">
 <div id="leftpanel">
 <div id="menubar_vertical">Menubar Vertical</div>
 <div id="news">News</div>
 </div>
 <div id="body">Body</div>
</div>
<div id="footer">Footer</div>
</div>
</body>

The output will look like this:

Now attach the following style sheet to this web page:
<style>
div
{
 border: 1px solid #333233;
}
#container
{
 width: 780px;
 margin: auto;
 border: 0px;
}
#head
{
 height: 100px;
}
#header
{
 text-align: center;
 margin-top: 30px;
 border: 0px;
}

 41

Download at Boykma.Com

What Designers Need to Know

 42

#menubar_horizontal
{
 margin-top: 5px;
 padding: 5px;
 text-align: right;
}
#content
{
 margin-top: 5px;
 padding: 5px;
}
#leftpanel
{
 height: 350px;
 width: 200px;
 padding: 5px;
 float: left;
}
#menubar_vertical, #news
{
 width: 190px;
 margin: auto;
 margin-top: 5px;
 padding: 5px;
}
#menubar_vertical{
 height: 150px;
}
#news
{
 height: 180px;
}
#body{
 left: 210px;
 height: 359px;
 padding: 5px;
}
#footer
{
 margin-top: 5px;
 padding: 5px;
}
</style>

The output will now be completely different, as shown in the figure opposite. Without using any
tables, you have a well-structured design.

Download at Boykma.Com

Chapter 3

CSS is a very powerful tool. Take a closer look at the CSS code above to get a feel of how it
works. The purpose of this example is to show that whenever you write a specific component, it's
worth writing it inside a <div> tag and then processing it with your cascading style sheets.

You should also correctly identify the fixed and dynamic parts of your site. Any part of your
template that is not enclosed by a Smarty tag is fixed. It can only change if somebody comes and
edits the template. (A fixed part may be conditional, that is, if a condition is satisfied, a specific
fixed part may be displayed—but the content of that part will always be fixed.)

Some dynamic parts, such as Navigation Menus, will only change rarely. It's still best to treat
these as dynamic parts. In later chapters, we will see how to use caching so that rarely updated
sections are not regenerated every time a page is requested. This will make your site faster,
although for many sites the difference will not be noticeable.

Handy Built-in Tags
Smarty comes with some handy tags that can reduce your design time to a great extent. These
tags are pre-configured to deliver some helpful HTML components. Always try to use them
instead of coding your own components.

 43

Download at Boykma.Com

What Designers Need to Know

A short selection of handy plug-ins is

 44

HTML_options, HTML_radios, HTML_select_time,
HTML_select_date, HTML_table, and textformat. These will be discussed in the
next chapter.

Choosing an Editor for Template Design
There are several commercial as well as freeware WYSIWYG or visual editors available for editing
HTML as well as templates. Editing some complex templates demands that you have a visual editor.
Text editors such as Notepad work too, but they aren't very feature rich and don't provide you with
the advance templating features available in visual editors. Macromedia Dreamweaver MX
(DWMX), a popular commercial visual editor, is probably the most advanced. Let's see some
screenshots that show you how to visually edit your template without any Smarty code.

In DWMX you can edit and view your template at the same time, which helps you to place correct
tags in their exact position.

Download at Boykma.Com

Chapter 3

Finally, DWMX gives you a rich toolset for different widgets, which will reduce the time for
template editing so you can concentrate more on Smarty instead of wasting time in raw HTML.

There is also an extension that allows you to manipulate several Smarty tags inside DWMX. This
extension is free of cost but using it requires a bit more knowledge about Smarty. Hence, we are
not looking at it in detail. You may visit the website http://Smartydwt.klitsche.org/ for more
information about this tool.

There are several other commercial alternatives to DWMX like Microsoft FrontPage, CofeeCup
HTML editor, Adobe GoLive, HoTMetaL PRO, and so on.

Note that commercial hi-fi WYSIWYG editors are not mandatory, they are just able to make your
life easier while editing templates with their rich toolsets. Some people simply use notepad to
develop excellent sites. Before ending this section, just one more editor for you and that is
HTMLGate Free. This award-winning, WYSIWYG editor is developed by MP Software
(www.mpsoftware.dk) and is available free of cost.

 45

Download at Boykma.Com

What Designers Need to Know

Collaborating with Programmers
While editing templates you must collaborate with your programmers. Programmers fetch items of
data and assign them to variables, which are passed to a designer. As a designer, you must know
the structure and contents of these variables. The typical tasks that a designer needs to do are:

• Ask your programmer to document properly the variables, arrays and anything else
he or she passes to you.

• Take extra care if the supplied array is associative or indexed, because templating
style will be changed in these two cases.

• Always use {debug} in the start of your template to recheck what is supplied to you.
As every designer faces problems manipulating arrays and nested arrays, it's better to
turn on debugging from the first. Before deployment, just remove this line.

• As I said before, if you need a special functionality in your Smarty template engine,
ask programmers in your team to develop it for you. On the other hand, if your
programmer develops a plug-in, ask him or her to supply documentation.

 46

Download at Boykma.Com

Chapter 3

• If your programmer supplies an object to you, (classes could be passed to template
designers to exclusively access their methods and properties) ask him or her at the
very beginning about exposed methods and attributes.

• Always recheck your designed templates with programmers. This synergy will help
you to output the best usable template.

Summary
Smarty is as good as a separate language. It gives you full flexibility over designing your
templates, but you have to be cautious while doing your job. Don't mess too much with graphics,
fonts, or colors. Pay more attention to reusability and component separation. Spend some time in
planning before hard coding your template.

Finally, remember that design is an art, so imagine as much as you can—it doesn't matter whether
it is impossible or possible—just imagine. Note down your proposals, choose the best feasible one
among them and then start designing.

 47

Download at Boykma.Com

Download at Boykma.Com

4
Creating a Template

So far you have understood the dos and don'ts for a template designer. Are you waiting to see how
templates work in real-world problems and how you can design them to solve your daily needs?
This chapter will guide you through real-life problems and their solutions. We will see the basics
as well as some interesting templates, but won't look at the code in detail.

Can you imagine scenarios in which Smarty templates would be fruitful? Can you imagine how
you can realize your wildest web page designs using Smarty? Not yet? This chapter will help you
to tap the full potential of Smarty. Ready? Let's go…

Design Concepts, from HTML to TPL
Smarty templates are written in simple HTML, with embedded Smarty tags. Whatever you can do
with an HTML page, you can do with templates. Templates are not pure HTML. They may
contain logic as well as some very basic elements of a programming language. Hence, designing
them needs a little bit more planning and you may need to study the templating system as well.
Previously there were some templating engines that worked using the variable substitution
process. This used to work but was a slow process and template designers weren't able to achieve
full flexibility using it. Smarty is much faster as it compiles your templates into raw PHP code,
executes it and returns pure HTML to end users. Smarty TPL (Template Programming Language)
makes the job easy for you. All you have to know are its syntax and usage. Don't worry as the
learning curve of Smarty is short. Smarty TPL is a feature-rich language that allows you to solve
almost every kind of presentation problem.

In pure HTML, there was nothing dynamic and everything was processed on the client's machine.
Server-side languages like PHP solved this problem. They increased the interactivity to a higher
level and are doing a fine job. Smarty was introduced to further ease the life of designers and
developers. Let's look at how a static HTML website differs from PHP and Smarty TPL.

Download at Boykma.Com

Creating a Template

 50

Every Smarty template contains some functions and variables. These functions are
pre-programmed to perform various actions. Using variables, you can talk to your programmers.
Programmers usually supply data in PHP variables and you have to process them with Smarty
functions and variables. Let's see the following examples.

<html>
<body>
<table width="80%" border="1" cellspacing="0" cellpadding="2">
 <tr>
 <td width="38%" bgcolor="#CCCCCC" >Profile of
Mortuza</td>
 <td width="62%"> </td>
 </tr>
 <tr>
 <td>Name : </td>
 <td>Mortuza Morshed </td>
 </tr>
 <tr>
 <td>Born</td>
 <td>1980</td>
 </tr>
 <tr>
 <td>Blood Group </td>
 <td>O (+ve) </td>
 </tr>
 <tr>
 <td>Email</td>
 <td>mortuzamorshed@somedomain.com</td>
 </tr>
</table>

<table width="80%" border="1" cellspacing="0" cellpadding="2">
 <tr>
 <td width="38%" bgcolor="#CCCCCC" >Profile of Ayesha
</td>
 <td width="62%"> </td>
 </tr>
 <tr>
 <td>Name : </td>
 <td>Ayesha Siddika</td>
 </tr>
 <tr>
 <td>Born : </td>
 <td>1979</td>
 </tr>
 <tr>
 <td>Blood Group : </td>
 <td>B (+ve) </td>
 </tr>
 <tr>
 <td>Email : </td>
 <td>ayeshasiddika@somedomain.com</td>
 </tr>
</table>
</body>
</html>

Download at Boykma.Com

Chapter 4

This is a typical example to display two profiles. You were lucky to get only two. If there were
hundreds or thousands, you would have to write each of them in static HTML form. Let's see how
Smarty simplifies this problem, provided you have all this data stored in a database. Following is a
sample Smarty template for this:

profiles.tpl
<body>
{foreach item=student from=$students}
<table width="80%" border="1" cellspacing="0" cellpadding="4">
 <tr>
 <td width="38%" bgcolor="#CCCCCC">
 Profile of {$student.nick}</td>
 <td width="62%"> </td>
 </tr>
 <tr>
 <td>Name : </td>
 <td>{$student.name}</td>
 </tr>
 <tr>
 <td>Born</td>
 <td>{$student.born}</td>
 </tr>
 <tr>
 <td>Blood Group </td>
 <td>{$student.blood_grp}</td>
 </tr>
 <tr>
 <td>Email</td>
 <td>{student.email}</td>
 </tr>
</table>

{/foreach}
</body>

Note that this is simple HTML code with some embedded Smarty variables. So what do these
variables contain and how are they populated? Let's take a look at the following PHP script, which
populates and displays variables using the Smarty template engine:

 51

Download at Boykma.Com

Creating a Template

 52

profiles.php
<?
include("libs/smarty.class.php");
$smarty = new Smarty ();

[.. your database connection done here ..]

$result = mysql_query("SELECT nick, name, born, blood_grp, email
 FROM students st
 LIMIT 10
 "); //your sql
$students = array(); //just an empty array
while ($row = mysql_fetch_assoc($result))
{
 $students[] = $row; //append the whole $row array in $students
}

$smarty->assign("students",$students); //assign
$smarty->display("profiles.tpl"); //compile and render the output
?>

This PHP script simply fetches data from a table students into an array, appends it to a collection
array ($students) and finally assigns it to the Smarty engine. Next, it calls the display() method
with the template file name as a parameter. The display() method renders your template with
these variables and returns the output to your browser.

Now run this script. What do you see? This is the same output as your static HTML produced. It
doesn't matter whether your database has hundreds or thousands or more records. They will all be
displayed without a single change in business logic or template code.

Take a look at the template code profiles.tpl, which has some portions highlighted. These are
the Smarty functions and variables. Variables are managed by the PHP script written by
programmers. A designer's job is to use them where they need to be used.

Introduction to Smarty Variables
In general, variables are containers that store a chunk of data. Smarty variables are no different but
in most cases they are populated using a PHP script. While naming the variables, follow the same
convention as you did in PHP. For example, here are some rules:

• Don't start with a numerical character
• Avoid using the name of any reserved variable of PHP (like $_POST or T $_SERVER)
• Give it a meaningful name (for the sake of simplicity)
• Start it with a $ sign

Moreover all Smarty variables must be enclosed with braces {}. These are the basic conventions for
naming Smarty variables. Let's see a small template and an example of assigning variables in a script.

sample.tpl
<html>
<body>
Hello {$name}, {$greetings}.
</body>
</html>

Download at Boykma.Com

Chapter 4

Save this file in your templates folder as sample.tpl. In this template, there are two variables named
{$name} and {$greetings}. We will now populate these variables using our PHP script.

sample.php
<?php
include("libs/smarty.class.php");
$smarty = new smarty();
$sample_name = "Jamil Ahmed";
$smarty->assign("name", $sample_name);
$smarty->assign("greetings", "Good Morning");
$smarty->display("sample.tpl");
?>

Save this file as sample.php and run it. You will get the following result:

As you can see, Smarty substitutes the template variable {$name} and {$greetings} with data
supplied from your PHP script. You can assign variables with the assign() method. In the
assign() method, the first parameter is the name of the Smarty variable and the second parameter
is the data you want to assign to it. To assign a variable in the template itself, use the assign()
function inside your template like this:

{assign var = "date" value = "27th September, 2005"}
Today is {$date}

This will output Today is 27th September, 2005. You don't need to assign any extra data to this
{$date} variable. You can assign any data, array and user-defined objects (mainly classes) in a
Smarty variable. If you pass an object to your template, you can even access its methods and
properties inside your template. Smarty gives you ultimate flexibility while templating. Later in
this chapter we will discuss arrays.

Starting Templates
In real-world web development, templates can get much more complicated than this. Smarty
templates are great for solving complicated development problems in a simple way. As we have
discussed in previous chapters, if you properly plan before starting your template, it will save your
time and money.

 53

Download at Boykma.Com

Creating a Template

 54

Before starting your template, make sure you have a solid understanding of the Smarty
foundations. Don't leap in after skim-reading this chapter! Paying careful and imaginative
attention to the Smarty basics will prove worthwhile.

Templates in real life use arrays in a big way. Arrays in Smarty, like those in other programming
languages are just a collection of variables. In PHP, arrays are of two different types, one is a
non-associative array where array values have no key, and the other is associative where values
are associated with keys. Let's see these two types.

Non-associative Array
$students = array("Didar", "Emran", "Hasan", "Deborah", "Shahana");

In the above array example, $students is an array where $students[0] is Didar, $students[1] is
Emran and so forth. It is the most common style of populating an array but associative arrays have
some benefit over non-associative arrays.

Associative Array
$students = array(
 "didar" => array("name"=>"Didar Bhuiyan", "roll"=>12)
 "emran" => array("name"=>"Emran Hasan", "roll"=>18
 "hasan" => array("name"=>"Tanveer Hasan", "roll"=>23));

In this array, all items are pointed to by a key. For example $students["didar"] is an array with
two items, name and roll. So if you want to see what is the roll number of Didar then you can
access it via $students['didar']['roll']. This code is much more readable than something like
$students[0][1]. You should try your best to use associative arrays in your templates for the
sake of simplicity. In some complex cases, however, non-associative arrays are flexible to manage
in Smarty templates.

Now that you have some basic idea about arrays, let's see how to pass arrays to Smarty templates
and how to manipulate them.

Passing Arrays to Smarty Templates and Manipulating
Them
In this section, we will pass arrays from PHP code to the Smarty templating engine and discuss
how to process them. You will find that it is very useful to pass an associative array instead of a
non-associative one because you can access each element of this array with a readable name,
which in turn, simplifies the code and also increases the extensibility. Let's take a look at this code:

associative_array.php
<?
 include_once("libs/smarty.class.php");
 $smarty = new smarty();
 $students = array(
 "didar" => array("name"=>"Didar Bhuiyan","roll"=>12),

 "emran" => array("name"=>"Emran Hasan","roll"=>18),
 "hasan" => array("name"=>"Tanveer Hasan","roll"=>23));
 $smarty->assign("students",$students);
 $smarty->display("associative_array.tpl");
?>

Download at Boykma.Com

Chapter 4

associative_array.tpl
<html>
<body>
<table>
<tr><td>Name</td><td>Roll</td></tr>
{foreach item=student from=$students}
 <tr>
 <td>{$student.name}</td>
 <td>{$student.roll}</td>

</tr>
 {/foreach}
 </table>
 </body>

</html>

Run the associative_array.php file, and you will see output like this:

How is this done for every item in this array? If you look at the code, there is a {foreach} tag, which
creates a loop. A loop is a block of code that repeats while a condition is true. Here this loop
iterates through every element of the array. When it gets an element, note that it is also an array of a
roll and a name item. So we can access them with a dot (.) sign after the array variable.
{$student.roll} means the "roll" item of the current array, {$student.name} means the name.

If you pass the array as an object, you can access its elements using OOP-style PHP in your
Smarty templates. Let's see how to access them in OOP style.

oop_style.php
<?
include_once("libs/smarty.class.php");
class student
{
 var $name;
 var $roll;
}

 55

Download at Boykma.Com

Creating a Template

 56

$student = new student();
$student->name = "Arifin";
$student->roll = "29";

$smarty = new smarty();

$smarty->assign("student", $student);
$smarty->display("oop_style.tpl");
?>

oop_style.tpl
<table>
<tr><td>Name</td><td>Roll</td></tr>
 <tr>
 <td>{$student->name}</td>
 <td>{$student->roll}</td>
</tr>
</table>

The only important thing to point out here is the accessing style. Every item is accessed using
OOP-style PHP, which means an object followed by an "->" operator.

Template designers, note down how the documentation by programmers can help you in these
cases. This documentation helps you to create the loop, to access the array and of course to use the
appropriate variable in the correct place. Don't neglect the documentation. Remember that it will
save you many sleepless nights.

Basic Templating
We are now going to show you how to develop templates to meet your real-world needs.
Templates can be used in multiple places from basic forms to dynamic reports, simple web pages
to extremely complex ones. In this section we will show you some great examples of Smarty
templating and scripts to manage them.

Templates in the real world are a bit complex. To start, let's gain a basic understanding of logical
conditions and loops.

Logical Conditions
Almost all programmers are familiar with logical conditions. Smarty TPL comes with useful
logical statements that you can use in your templates. Smarty logic differs in syntax from PHP. In
PHP, the scope of if is defined by braces, but in Smarty the scope is defined by an {if}{/if}
block. All PHP conditional operators are supported by Smarty {if}. Let's look at the following
comparison operator table taken from the Smarty manual:

Qualifier Alternatives Syntax Example Meaning PHP Equivalent

== eq $a eq $b equals ==

!= ne, neq $a neq $b not equals !=

> gt $a gt $b greater than >

< lt $a lt $b less than <

Download at Boykma.Com

Chapter 4

Qualifier Alternatives Syntax Example Meaning PHP Equivalent

>= gte, ge $a ge $b greater than or equal >=

<= lte, le $a le $b less than or equal <=

=== $a === 0 check for identity ===

! not not $a negation (unary) !

% mod $a mod $b modulus %

is [not] div by $a is not div by 4 divisible by $a % $b == 0

is [not] even $a is not even [not] an even number (unary) $a % 2 == 0

is [not] even by $a is not even by $b grouping level [not] even ($a / $b) % 2 == 0

is [not] odd $a is not odd [not] an odd number (unary) $a % 2 != 0

is [not] odd by $a is not odd by $b [not] an odd grouping ($a / $b) % 2 != 0

To define various conditions, Smarty also supports {elseif} and {else}. Let's go through an
example to show Smarty {if} {else} {/if} in action.

sample_if.tpl
<table>
<tr><td>Name</td><td>Roll</td><td>Grade</td></tr>
 <tr>
 <td>{$student->name}</td>
 <td>{$student->roll}</td>
{if $student.grade='F'}
<td bgcolor='red'>Failed</td>
{else}
<td bgcolor='green'>Passed</td>
{/if}
</tr>
</table>

This {if} block, changes the table cell color according to the supplied grade of a student. If the
grade is F, it will be shown in a red background. Otherwise, green. You can write multiple
conditions using the {if} {elseif} {elseif} {else} {/if} style. In Smarty, you can also
implement a nested {if} {/if} block.

Loops
In Smarty, you can perform loops with two different tags. One is {section} and the other is
{foreach}. Both of them are significant in different scenarios. {section} is very helpful when
programmers supply the arrays in non-associative style. You can traverse through the index of an
array. In this chapter you have already seen some examples of {foreach}. We will discuss them a
bit more in this section.

 57

Download at Boykma.Com

Creating a Template

 58

section
{section} needs two parameters, name and loop, where name could be anything alphabetical and
increases in each iteration. The other required parameter is loop. This is the name of the supplied
array variable through which the {section} loops. But how many times does the loop iterate? This
depends on the number of items in the supplied array, or anything you specified exclusively.
{section} has four more optional parameters. One is start, which determines the initial counter,
step is the increment, max is the maximum value that the {section} will loop, and a Boolean
parameter show, which determines whether the {section}{/section} block will be displayed or not.

sample_section.tpl
{section name=my_loop loop=3}

I am Looping

{section}

Just note that we didn't supply any array here. If you run this, this will simply print:

I am looping

I am looping

I am looping

sample_section2.tpl
<table>
{section name=id loop=$titles}
 <tr>
 <td><tmg src={$images[id]}</td>
 <td>Title: {$titles[id]}

 Price: {$price[id]}

 Author: {$authors[id]}</td>

</tr>
{/section}

Let's write a small PHP script that will fetch book data from your database and supply them to
your template.

sample_section2.php
<?
 #...your mysql connection & smarty initialization goes here
 $result = mysql_query(SELECT title, image, price, author from books LIMIT 20);
 while ($row = mysql_fetch_assoc($result)
 {
 $titles[] = $row['title'];
 $images[] = $row['image'];
 $prices[] = $row['images'];
 $authors[] = $row['author'];
 }
 $smarty->assign("titles",$titles);
 $smarty->assign("images",$images);
 $smarty->assign("prices",$prices);
 $smarty->assign("authors",$authors);

 $smarty->display("sample_section2.tpl");

?>

Download at Boykma.Com

Chapter 4

If you run the script then you see the following output:

Just take a look at the code once again and note that the {section} loops with the $titles array.
As the id increments, we can use other assigned arrays with this id in the {section} scope. Here,
all the supplied arrays are non-associative.

Though the {section} name increments, you can't display it as {$section_name}. You
have to use some built-in properties of the {section} tag.

{Section} has some built-in variables that give you extra facility and control its attributes. These
are discussed below.

index
index shows you the current loop index of the loop. This is very helpful if you want to display a
serial number or if you want to process a particular loop index. It is used as shown here:

{section name=id loop=3}
This is loop index {$smarty.section.id.index}

{/section}

This will output

 This is loop index 0

 This is loop index 1

 This is loop index 2

first
first gives you the first index of the loop. Usually this is zero, but this could be overridden if you
specify the starting index by start attribute of {section}. You can use first to initialize if
anything needs to be done before the further iterations. For example, you can check this:

 59

Download at Boykma.Com

Creating a Template

 60

{if $smarty.section.section_name.first}
<h2>This is Heading</h2>
{else}
do what ever you want
{endif}

iteration
iteration is similar to index but returns the current iteration number. If you loop three times
with the start attribute set to ten, then index will return 10, 11, and 12 respectively; but
iteration returns 1, 2, and 3. This is the main difference between index and iteration.
iteration has an alias with a similar functionality. This is rownum.

total
This returns the total number of iterations. Note that this is the only variable you can use after the
{section} ends.

loop
loop returns the last index number of the loop, which you can use after the loop or inside it.

foreach
{foreach} provides a great facility over {section}. With {foreach} you can iterate through the
items of an array and access their properties much more easily as compared to {section}. I
personally prefer to use {foreach} all the time. It extracts each item of the array as a separate
array containing key-value pairs. You can access each and every property of that extracted object
in an associative style. This increases the readability of your code and makes it easy for other team
members who work with this code. For example, if you run a query in your database and then
fetch the results preserving their keys (that is, using the mysql_fetch_assoc() function) and pass
them to Smarty, then the {foreach} loop will extract each row from this whole result set as an
associative array. You can access the data of every column for that row in this format:
$object.propertyname. This makes your code much more structured and readable. If you want
to convert the {section} example shown in the previous section into a {foreach} example, it will
look like this:

sample_section2.tpl
<table>
{foreach item=book loop=$books}
 <tr>
 <td><tmg src={$book.image_id}</td>
 <td>Title: {$book.title}

 Price: {$book.price}

 Author: {$book.authors}</td>

</tr>
{/section}

and the PHP code will be as shown:

Download at Boykma.Com

Chapter 4

sample_section2.php
<?
 #...your mysql connection & smarty initialization goes here
 $result = mysql_query(SELECT title, image, price, author from books LIMIT
20);
 while ($row = mysql_fetch_assoc($result)
 {
 $book['title'] = $row['title'];
 $book['image_id'] = $row['image'];
 $book['price'] = $row['images'];
 $book['authors'] = $row['author'];
 $books[] = $book;
 }
 $smarty->assign("books",$books);
 $smarty->display("sample_section2.tpl");

?>

Templates in the Real World
Now that we have discussed the basics, let's see how templates work in real-world problems. We
will show you how to develop some templates that can solve your everyday problems. These are
listed below:

• Calendar
• Generalized Database Reports
• Data Input Forms
• Email Newsletter

Calendar
Calendar is a HTML gadget you may occasionally need for a website. If you plan to develop a
calendar, don't worry about writing many lines of code. Using Smarty, you can develop it in a very
straightforward way. Let's see how.

calendar.tpl
{$title}
{html_table loop=$special_days cols=7}
</body>
</html>

In this template, we use a special Smarty function named {html_table}. We will discuss this in
detail, later in this section. First let's take a look at the PHP script that assigns the variables to
display the calendar.

calendar.php
<?
 include("libs/smarty.class.php");
 $smarty = new smarty();

 $date = "10/01/2005"; //October 01, 2005

 61

Download at Boykma.Com

Creating a Template

 $week_days = array("Sat"=>1, "Sun"=>2, "Mon"=>3,"Tue"=>4,"Wed"=>5,
"Thu"=>6,"Fri"=>7);

 $total_day_of_month = get_total_day($date);
 $starting_day = $week_days[Date("D",strtotime($date))] - 1;
 foreach (array_keys($week_days) as $day)
 $days[] = $day;
 for ($i=0; $i<$starting_day; $i++)
 $days[] = " ";
 for ($i=1; $i< ($total_day_of_month+1); $i++)
 $days[] = $i;

 $smarty->assign("title","October 2005");
 $smarty->assign("special_days", $days);
 $smarty->display("calendar.tpl");

function get_total_day($date)
{
 $time_stamp = strtotime($date);
 $month_ar = split("/", $date);
 $month = $month_ar[0];
 $year = Date("Y",$time_stamp);
 for ($i=28; $i<33; $i++)
 {
 if (!checkdate($month, $i, $year)){
 return ($i - 1);
 }
 }
}

?>

If you run this script in a browser you will see the following output:

Note that in the code, we supplied the date in the $date variable. If you change it to 11/01/05 then
you will see the following output.

 62

Download at Boykma.Com

Chapter 4

That's it, you're done!. Have you noticed how small the template is? As we said, we use a special
Smarty function {html_table}. This takes an array as parameter and an optional column number.
By default the column number is set to 3. Here we need seven columns for a calendar, so we
specified cols=7. Then it displays the array as a table splitting it into specified number of columns
in each row.

Database Report
Database reports are the most common examples where Smarty is used. With Smarty, you can
develop smashing reports in a minute. However, if you want to your reports to look good, you
must have some knowledge about CSS. For this example, we have the following tables:

mysql> DESC agents;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
area	varchar(50)				
agent_id	int(11)			0	
agent_name	varchar(255)				
+------------+--------------+------+-----+---------+-------+

mysql> DESC items;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
item_id	varchar(10)				
item_name	varchar(255)				
item_price	int(11)			0	
+------------+--------------+------+-----+---------+-------+

 63

Download at Boykma.Com

Creating a Template

 64

mysql> DESC sales;
+----------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+-------------+------+-----+---------+-------+
agent_id	int(11)			0	
item_id	varchar(10)			0	
quantity	int(11)			0	
+----------+-------------+------+-----+---------+-------+
3 rows in set (0.00 sec)

database_report.php
<?
include("libs/smarty.class.php");
$smarty= new smarty();
mysql_connect("localhost","root","root");
mysql_select_db("smarty");
$result = mysql_query("SELECT area,
 agent_name,
 item_name,
 quantity,
 item_price,
 (quantity*item_price) as total
 FROM agents
 INNER JOIN sales on agents.agent_id = sales.agent_id
 INNER JOIN items on sales.item_id = items.item_id
 ORDER BY area ASC");
while ($row = mysql_fetch_assoc($result))
{
 $areas[] = $row['area'];
 $agents[] = $row['agent_name'];
 $items[] = $row['item_name'];
 $quantities[] = $row['quantity'];
 $total[] = $row['total'];
}

$fields = array("area", "agent", "item", "quantity", "total");

$smarty->assign("areas", $areas);
$smarty->assign("agents", $agents);
$smarty->assign("items", $items);
$smarty->assign("quantities", $quantities);
$smarty->assign("total", $total);
$smarty->assign("fields", $fields);
$smarty->display("database_report.tpl");
mysql_free_result($result);
?>

This script executes a query and fetches the records. It then makes an array of each item and
assigns it to a Smarty variable. Now, it's time to develop the template for the report. Let's go.

database_report.tpl
<html>
<body>
<table cellpadding="4" border="1" cellspacing="0"><tr>
{section name=id loop=$fields}
<th>{$fields[id]}</th>
{/section}
</tr>
{section name=data loop=$areas}
<tr>
<td>{$areas[data]}</td>

Download at Boykma.Com

Chapter 4

<td>{$agents[data]}</td>
<td>{$items[data]}</td>
<td>{$quantities[data]}</td>
<td>{$total[data]}</td>
</tr>
{/section}
</table>
</body>
</html>

Now run this script and you will get the following output:

You get a basic database report with not much attention paid to its presentation and look. The
template code is so simple that Smarty beginners can easily understand it. Let's see how we can
make this report look better with another Smarty function, cycle.

cycle is a Smarty function that just cycles through a set of values and returns them one by one.
This function is extremely useful when you are trying to choose alternating values for a specific
purpose. For an example, if we change the background color of every <tr> element then definitely
it will look more pleasant. Let's see the {cycle} function in action. Just replace the <tr> on the
ninth line in the above template with the following code:

<tr bgcolor='{cycle values="#EBEBEB, #ACABAB"}'>

 65

Download at Boykma.Com

Creating a Template

Now run the script and you will see the following output:

Smarty gives you extremely powerful functions for doing everything you would like to.

Let's apply some CSS over your template. We will just change the <th> style, and remove the table
border and add the following style definition at the beginning of the database_report.tpl file.

<style>
#report_table th{
 border: 1px solid;
 /*padding-left: 15px;*/
 padding-right: 30px;
 color: #EEEEEC;
 background-color: #25510D;
 text-align: left;
}
#report_table {
 border: 1px solid #cccccc;
}
</style>

We will also replace the third line of our previous template code with this one:
<table cellpadding="4" border="0" cellspacing="1" id='report_table' ><tr>

 66

Download at Boykma.Com

Chapter 4

Now see the output.

Just note that we used a specific table id and CSS only to avoid CSS cross referencing. Always
practice this to avoid unexpected results.

Data Input Forms
Data input forms are required in almost all web applications. Smarty provides some helpful
functions to better your form design process. These functions output some HTML objects that
generally take time to process via PHP or JavaScript. They come handy when you want to retrieve
some information and display it in the edit mode.

For example, let's assume your user has entered his or her skill matrix in different checkboxes.
Now you have to retrieve this information from the database and show it in the same format as
your user entered it initially: that is, some checkboxes remain checked while others remain
unchecked. This scenario becomes extremely complex if you want to achieve this using only PHP.

In the following example, we will make a user survey form and show it in edit mode according
to your user's given input. We should have a combo box, checkbox and radio buttons in our
input form. We will not go through the details of saving this data in a database. Instead we will
concentrate on techniques for displaying it in edit mode.

 67

Download at Boykma.Com

Creating a Template

 68

survey.tpl
<html>
<head>
<title>Survey Form</title>
<style type="text/css">
{literal}
body,td,th {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: 12px;
}
{/literal}
</style>
</head>
<body>
<p>Survey Form</p>
<form name="survey_form" method="post" action="">
 <table width="339" border="0" cellpadding="4" cellspacing="0">
 <tr>
 <td width="165">Name: </td>
 <td width="158"><input name="name" type="text" id="name"
 value="{$name}"></td>
 </tr>
 <tr>
 <td>Email: </td>
 <td><input name="email" type="text" id="email" value="{$email}"></td>
 </tr>
 <tr>
 <td>Country: </td>
 <td><select name="country">
 {html_options options=$countries selected=$country}
 </select></td>
 </tr>
 <tr>
 <td>State: </td>
 <td><select name="state">
 {html_options options=$states selected=$state}
 </select></td>
 </tr>
 <tr>
 <td valign="top">Company Name: </td>
 <td><p>
 <input type="text" name="company_name">

 {$company_start}</p> </td>
 </tr>
 <tr>
 <td valign="top">Company Starts: </td>
 <td>{html_select_date}</td>
 </tr>
 <tr>
 <td valign="top">Yearly Revenue of your Company: </td>
 <td>{html_radios name="yearly_revenue" options=$revenues
 selected=$revenue separator="
"}
</td>
 </tr>
 <tr>
 <td valign="top">Primary OS: </td>
 <td>
 <p>{html_checkboxes name="os" options=$oses selected=$os
 separator="
"}</p>
 </td>
 </tr>
 </table>
</form>
</body>
</html>

Download at Boykma.Com

Chapter 4

survey.php
<?
include_once("libs/smarty.class.php");
$smarty =new smarty();

$smarty->assign("name", "Junayed Ahnaf");
$smarty->assign("email", "junayed@sampledomain.com");

$countries = array("Bangladesh", "India", "Pakistan", "Nepal", "Maldives",
"Srilanka", "Bhutan");
$country = 0;
$smarty->assign("countries", $countries);
$smarty->assign("country", $country);

$states = array("state1", "state2", "state3", "state4", "state5");
$state = 3;
$smarty->assign("states", $states);
$smarty->assign("state", $state);

$smarty->assign("company_name", "My World");
$smarty->assign("company_start_date", "12/2001");

$smarty->assign('revenues', array(
 1 => '$0-$10000',
 2 => '$10000-$20000',
 3 => '$20000-$50000',
 4 => '$50000+'));
$smarty->assign('revenue', 2);

$smarty->assign('oses', array(
 1 => 'Windows XP',
 2 => 'Linux',
 3 => 'Sun Solaris',
 4 => 'Mac OS'));
$smarty->assign("os", array(2,1));
$smarty->display("survey.tpl");
?>

To keep the coding simple, I hard-coded the variable assignments in the above example. In a
real-life application, of course, this data would be retrieved from a database or other source.

The first time that the user visits this page, these variables have no value. The visitor will see all
those HTML objects with no pre-selected value at all. When the user selects something then we
will store it in the database.

The main goal of this example is to show how to retrieve the data items and show them in edit
mode while keeping the code simple. Let's see how the form will be displayed in a browser for
first time.

 69

Download at Boykma.Com

Creating a Template

In this template we used some special Smarty functions like {html_radios}, {html_checkboxes},
{html_select_date}, and {html_options}. {html_radios} and {html_checkboxes} are used
to generate a group of radio buttons and checkboxes. Moreover, you can define the values that
will be pre-selected for these functions. This feature makes them usable in real life, because
pre-selecting these checkboxes with retrieved information is a big hassle, whether you do it on the
server side or client side. Smarty makes it easy for template designers. {html_select_date}
returns a set of combo boxes to make it easy to select dates. You can control the range of years
and dates. {html_select_date} has a similar sibling that just gives you the facility to select time
instead of date; this is {html_select_time}. We will discuss these functions in detail in Chapter 6.

Email Newsletter
Newsletters are a very popular way to broadcast news about the products of a company or
whatever. Due to extensive use of email, these days email newsletters are gaining popularity. You
can use Smarty to generate attractive newsletters for your users and send them as HTML mail.
Here we will show you a fixed design for this, but in practice you would like to pre-design a

 70

Download at Boykma.Com

Chapter 4

bunch of templates for your newsletters. In this example, we will generate a newsletter with
Smarty and broadcast it using the MIME mail sending capability of PHP.

newsletter.tpl
<table width="90%" border="0" align="center" cellspacing="5">
 <tr>
 <td bgcolor="#FFFFFF"><img
 src="http://www.packtpub.com/images/Packt.png"></td>
 <td><div align="right">
 <h3>Newsletter Issue {$issue} {$month}, {$year} </h3>
 </div></td>
 </tr>
 <tr>
 <td width="31%" bgcolor="#999999"><table width="100%" border="0"
 cellpadding="0" cellspacing="1">
 <tr>
 <td bgcolor="#999999"><div align="center">Books published in
this week </div></td>
 </tr>
 {section name=book loop=$books}
 <tr>
 <td bgcolor="#FFFFFF"><div align="center"><img src='{$images[book]}'
 vspace="2">

 {$books[book]} </div></td>
 </tr>
 {/section}
 </table></td>
 <td width="69%" valign="top">
 <p>
 {$reviews.title}

 {$reviews.description}

 Read More : Click Here
 </p> </td>
 </tr>
 <tr>
 <td colspan="2"><div align="center"> © Packt Publishing Ltd 2005
</div></td>
 </tr>
</table>

This is an imaginary newsletter for Packt Publishing. Let's assume they plan to distribute it weekly
with news of published titles and reviews about their books particular to that week. We will now
look at the script to generate a newsletter from this template and send it as an HTML mail to users
who subscribed to receive their newsletter. Following is a preview of our newsletter.

 71

Download at Boykma.Com

Creating a Template

newsletter.php
<?
include ("libs/smarty.class.php");
$smarty = new smarty();

$smarty->assign("issue", 3);
$smarty->assign("month","October");
$smarty->assign("year", 2005);

$books = array("Building websites with Mambo","Building Telephony Systems With
Asterisk");
$images =
array("http://www.packtpub.com/images/73x90/1904811736.png","http://www.packtp
ub.com/images/73x90/1904811159.png");

$smarty->assign("books", $books);
$smarty->assign("images", $images);

$review = <<< END
An easy introduction to using and configuring Asterisk to build feature-rich
telephony systems for small and medium businesses.
This book shows how to build a telephony system for your home or business
using the free and open source application, Asterisk. 'Building a Telephony
System with Asterisk' takes you step-by-step through the process of installing
and configuring Asterisk. It shows you how to make a deployment plan, and how
to create a dial plan.
END;

 72

Download at Boykma.Com

Chapter 4

$link = "http://www.packtpub.com/asterisk/book";
$title = "Building Telephony Systems With Asterisk";
$reviews = array("title"=>$title,
 "description"=>$review,
 "link"=>$link);
$smarty->assign("reviews", $reviews);

$output = $smarty->fetch("newsletter.tpl");

$user = "someuser@somedomain.com";

$headers = "MIME-Version: 1.0 \n" ;
$headers .= "Content-Type: text/html; charset=iso-8859-1 \n";
$headers .= "From: newsletter@my_domain.com \n";

mail($user, "Newsletter", $out, $headers);
?>

We used a special Smarty method fetch() instead of display(). This method renders the
template with variables and returns the rendered HTML to a variable. Though we need to send the
newsletter, we have to capture the rendered output into a variable for further processing. That's
why we used fetch(). Then we used PHP's built-in email sending capability to send this
newsletter as an HTML mail.

In the real world you shouldn't send newsletters as HTML mails as many mail service
providers do not support HTML mails and mails sent through them will be shown simply
as plain text with HTML tags. Therefore, you should always send a plain-text copy to
your users. The best practice is to ask users whether they want to receive HTML mails or
plain text mails and send newsletters according to their choice.

Running PHP Code Inside your Templates
The main objective of Smarty is to separate the business logic layer from presentation layer.
Therefore, a template should never contain business logic and the business logic layer should never
contain HTML. Smarty is an extremely powerful templating language and gives you maximum
flexibility as compared to other template engines. In Smarty, you can even run PHP code directly
inside your template. Though this is not recommended, you may need it in some rare cases.

Smarty has a {php} tag. If you write PHP code inside a {php}{/php} tag block, it will be executed
directly. Let's see the following example:

php_code.tpl
{php}
echo "This is PHP Code executing directly
";
for($i=0; $i<3; $i++)
echo "But it's better to avoid embedding PHP code in your template
";
{/php}

And here is the script to display it.

 73

Download at Boykma.Com

Creating a Template

php_code.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->display("php_code.tpl")
?>

If you run the script, you will see the following output. PHP codes are executed as usual.

Template programmers, you still you have the key in your hand. If you are worried about
security and don't want to allow some specific PHP functions from your templates, you
can block them from being used. In the next chapter we will show you how.

Summary
We have gone through the details of designing templates in this chapter and I am sure that you are
already impressed with Smarty. We have seen how templates can solve your daily needs in web
development and how you can start designing cool templates. If you use Smarty regularly, you
will find many more easy techniques to solve complex design problems. Smarty gives you the
ultimate power for designing and programming templates. In the next chapter, we will go into the
details of process control, configuration files for temporary storage, and variable modifiers, which
will ease the processing of variables to a great extent.

 74

Download at Boykma.Com

5
Advanced Templating

In the previous chapter, you have learned about the basic workflow of Smarty templates. We
demonstrated how you can implement conditions and loops, and also demonstrated usage of some
necessary Smarty functions that are used in everyday web applications. However, there are a lot of
features that you are not familiar with as yet. In this chapter we will give you a basic introduction
to plug-ins and modifiers. We will also go through the creation of two advanced web applications,
which will further clear your concepts. By the end of this chapter you will be introduced to
configuration files, a special storage medium for storing the value of Smarty variables and using
them later.

Smarty under the Hood
This section will clear any doubts you may have regarding the actual working of Smarty
templates. Whenever the Smarty engine is called to render a template file, it compiles the template
into native PHP code for the first time. Let's dissect a compiled template and take a detailed look
at the template itself.

profiles.tpl
<body>
{foreach item=student from=$students}
<table width="80%" border="1" cellspacing="0" cellpadding="4">
 <tr>
 <td width="38%" bgcolor="#CCCCCC" >Profile of
{$student.nick}</td>
 <td width="62%"> </td>
 </tr>
 <tr>
 <td>Name : </td>
 <td>{$student.name}</td>
 </tr>
 <tr>
 <td>Born</td>
 <td>{$student.born}</td>
 </tr>
 <tr>
 <td>Blood Group </td>
 <td>{$student.blood_grp}</td>
 </tr>
 <tr>
 <td>Email</td>

Download at Boykma.Com

Advanced Templating

 76

 <td>{$student.email}</td>
 </tr>
</table>

{/foreach}
</body>

In this template, we look through profiles of some students. Now take a look at the compiled
version of this template.

%%EB^EB9^EB93DE89%%profiles.tpl.php
<?php /* Smarty version 2.6.7, created on 2005-09-27 08:14:22
 compiled from profiles.tpl */ ?>
<body>
<?php if (count($_from = (array)$this->_tpl_vars['students'])):
 foreach ($_from as $this->_tpl_vars['student']):
?>
<table width="80%" border="1" cellspacing="0" cellpadding="4">
 <tr>
 <td width="38%" bgcolor="#CCCCCC" >Profile of <?php echo
$this->_tpl_vars['student']['nick']; ?>
</td>
 <td width="62%"> </td>
 </tr>
 <tr>
 <td>Name : </td>
 <td><?php echo $this->_tpl_vars['student']['name']; ?>
</td>
 </tr>
 <tr>
 <td>Born</td>
 <td><?php echo $this->_tpl_vars['student']['born']; ?>
</td>
 </tr>
 <tr>
 <td>Blood Group </td>
 <td><?php echo $this->_tpl_vars['student']['blood_grp']; ?>
</td>
 </tr>
 <tr>
 <td>Email</td>
 <td><?php echo $this->_tpl_vars['student']['email']; ?>
</td>
 </tr>
</table>

<?php endforeach; endif; unset($_from); ?>
</body>

This is pure PHP code, isn't it? The first two lines of this compiled template are simply a
timestamp created by Smarty, which describes the version of the Smarty engine used to compile
this template. The date of compilation is also indicated.

The third and fourth lines are PHP code that determines if anything is supplied to Smarty itself as an
array in the students variable. If anything is found, it will extract each element of that array in the
$_from variable and proceed through the loop. Again each element of this $_from is accessed via the
$this->_tpl_vars['student'] variable. All variables passed to the Smarty engine by PHP script
are stored in a global _tpl_vars[] array. This _tpl_vars[] is an internal global variable of the
Smarty engine. Now you understand that compiled templates are nothing but pure PHP code.
Hence they run much faster. Whenever a PHP script asks Smarty to compile a template, it first
looks in the compiled templates directory and checks if a compiled version is available or not. If

Download at Boykma.Com

Chapter 5

Smarty finds a compiled version of that template, it will not bother to compile it again unless the
original template code has been modified. For these internal processes Smarty is comparatively
faster than many other template engines.

Compile Steps
Lets discuss the steps by which a Smarty template is compiled:

1. Smarty applies prefilters (if any) over the whole template.
2. All built-in functions and tags are processed.
3. All custom modifiers are processed.
4. All custom block functions are processed. In this case if nested blocks are found then

the deepest block is processed first, then its parent is processed and so forth until all
the blocks are processed successfully.

5. Smarty applies postfilters (if any).
6. We get the compiled templates.

Prefilters and Postfilters
Prefilters are functions that are applied on your template before it is compiled. They are very
useful if you want to do some cleanup or preformatting before the compilation starts. You can
even use them for cleaning up the comments to reduce the output size. Postfilters are applied after
your template is compiled. However, filters are rarely used in real-life applications. Most
developers usually use modifiers and functions.

What is a Smarty Modifier?
Smarty modifiers are custom functions that process the value of any variable to achieve something
special that is not available otherwise. For example, if you wish to capitalize the variable,
concatenate some variables, or to perform string replace operations, then modifiers are the best
way to do it. You can apply modifiers to variables and custom functions. You can also pass
parameters to variable modifiers. Modifiers are a special kind of Smarty plug-in.

Stretch your Imagination with Smarty
In this section we will go through some wild and complex Smarty examples that are guaranteed to
stretch your imagination. We will see a complex student transcript template and a photo gallery.
The main goal of this section is to introduce you to advanced templating and to teach you how to
manipulate very complex nested arrays structures.

Student Transcript
A student transcript is the most common example for Smarty template designers. In this, all the
course results are supplied as a big nested array and you have to process them all and finally show
a printable transcript.

 77

Download at Boykma.Com

Advanced Templating

 78

We will use a dummy transcript model here with some dummy subjects. For this, assume we get a
very complex array structure like this:

Array
(
 [Fall 2005] => Array
 (
 [math-I] => Array
 (
 [title] => Prelimenary Mathematics
 [grade] => A+
)

 [eng-I] => Array
 (
 [title] => Basic English
 [grade] => A+
)

)

 [Spring 2006] => Array
 (
 [math-II] => Array
 (
 [title] => Basic Calculus
 [grade] => A+
)

 [ch-II] => Array
 (
 [title] => Advanced Chemistry
 [grade] => B+
)

)

)

Let's see how to process these deeply nested arrays and make them printable. Firstly, here are the
table structures:

Table Name: Grade
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
id	varchar(20)				
course_id	varchar(30)				
semester_id	varchar(30)				
grade	varchar(5)				
+-------------+-------------+------+-----+---------+-------+

Table Name: Courses
+---------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+--------------+------+-----+---------+-------+
course_id	varchar(30)				
course_title	varchar(255)				
course_credit	float			0	
+---------------+--------------+------+-----+---------+-------+

Download at Boykma.Com

Chapter 5

transcript.tpl
<body>
{literal}
<style>
.border_bottom
{
 border-bottom: 1px solid;
}
</style>
{/literal}
<h2>Transcript of {$roll}</h2>
<h4>Total Credit Completed : {$total}</h4>
<hr noshade />
<table width="791" align="center">
{foreach key=semester item=subjects from=$data}
 <tr>
 <td width="134" class="border_bottom">semester:</td>
 <td width="248" class="border_bottom">{$semester}</td>
 <td width="126" class="border_bottom"> </td>
 <td width="61" class="border_bottom"> </td>
 <td width="61" class="border_bottom"> </td>
 </tr>
 {foreach key=course_code item=data from=$subjects name=subject}
 <tr>
 <td> {$smarty.foreach.subject.iteration}</td>
 <td> {$course_code}</td>
 <td> {$data.title}</td>
 <td> {$data.credit}</td>
 <td> {$data.grade}</td>
 </tr>
 {/foreach}
 {/foreach}

</table>
</body>

transcript.php
<?
mysql_connect("localhost", "root", "root");
mysql_select_db("smarty");
$result = mysql_query("select semester_id, courses.course_id, course_title,
course_credit, grade from grade, courses where id='97016' and
courses.course_id = grade.course_id");
while ($row = mysql_fetch_assoc($result))
{
 $semester[$row['semester_id']][$row['course_id']]=array("title"=>$row['cou
rse_title'], "grade"=>$row['grade'], "credit"=>$row['course_credit']);
 $total_credit += $row['course_credit'];
}

include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->assign("data", $semester);
$smarty->assign("roll","97016");
$smarty->assign("total",$total_credit);
$smarty->display("transcript.tpl");
?>

 79

Download at Boykma.Com

Advanced Templating

The output is as follows:

Photo Gallery
A photo gallery is another application that you may need in your everyday web applications.
Smarty can help you to design fantastic templates for your photo gallery. Here, we will see the
template for a gallery page.

gallery.php
<?
include("libs/smarty.class.PHP");
$smarty = new smarty();
define("FILE_PER_PAGE",10);
$offset=$_REQUEST['file_id'];
$page=$_REQUEST['page'];

$offset = (int) $offset;
$page = (int) $page;
$start_offset = $page*FILE_PER_PAGE;

$fp = opendir("images");
while(false !== ($file = readdir($fp)))
{
 if ($file != "." && $file != "..")
 {
 $files[] = $file;
 }
}
$total_pages = ceil(count($files)/FILE_PER_PAGE);
for ($i=0; $i<$total_pages; $i++)
$pages[] = $i+1;

for ($i=$start_offset; $i<$start_offset+FILE_PER_PAGE; $i++)
{

 $temp_offset = $i-$start_offset;
 $temp_linked_files[] = "<a

 80

Download at Boykma.Com

Chapter 5

href='gallery.php?file_id={$temp_offset}&page={$page}'><img
src='images/{$files[$i]}' height=75 width=100>";
 $temp_files[] = $files[$i];
}

$current_file = $temp_files[$offset];

$smarty->assign("pages", $pages);
$smarty->assign("current_file", $current_file);
$smarty->assign("files", $temp_files);
$smarty->assign("linked_files", $temp_linked_files);

$smarty->display("gallery.tpl");
?>

gallery.tpl
<html>
<head>
<title>Photo Gallery</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
{literal}
<script>
function initialize()
{
 var file_id = document.getElementById("file_id");
 file_id.value=0;

}
</script>
{/literal}

<body>
<form name="form1" method="post" action="">
 <table width="100%">
 <tr>
 <td width="47%"><h1>Photo Gallery </h1></td>
 <input name="file_id" type="hidden" id="file_id">
 <td width="53%" align="right"> Page :
<select name=page>

 {html_options options=$pages}
</select>

 <input type="submit" name="Submit" value="Go"
onfocus="initialize();"></td>
 </tr>
 </table>
</form>
<hr size="0">
<table width="100%">
 <tr>

 81

Download at Boykma.Com

Advanced Templating

 <td width="47%" valign="top">{html_table loop=$linked_files}
</td>
 <td width="53%" align="right"><img width="403" height="283" border="1"
src="images/{$current_file}"></td>
 </tr>
</table>
<p> </p>
</body>
</html>

The output is as follows:

In the above .tpl file, we used an external thumbnail generator thumb.php. This is a very basic
photo gallery, which you can extend easily according to your choice. We here assumed that all
images are placed in a folder images in the same directory as this script.

Available Modifiers
As mentioned before, modifiers are nothing but custom PHP functions that work in conjunction
with Smarty. In this section we will go through Smarty modifiers and show an example for each of
them to help you to master them.

 82

Download at Boykma.Com

Chapter 5

capitalize
capitalize makes the first character of every word capital. It processes the entire variable. PHP
has a similar function called ucwords(). The capitalize modifier takes one optional parameter,
which determines whether to capitalize words containing numbers or not. If this parameter is true,
for example apollo13 will not become Apollo13. By default, this parameter is set to false.

capitalize.tpl
<body>
Before using modifier: {$somevalue}
After using modifier: {$somevalue|capitalize}
</body>

capitalize.php
<?
include("libs/smarty.class.PHP");
$smarty = new smarty();
$smarty->assign("somevalue","bangladesh is a small country in south asia");
$smarty->display("capitalize.tpl");
?>

Output
Before using modifier: Bangladesh is a small country in south asia
After using modifier: Bangladesh Is A Small Country In South Asia

count_characters
Smarty gives you the facility to count the number of characters present in a variable. You can use
the count_characters modifier for this purpose. This modifier also takes one optional parameter
(by default set to false), which determines whether to count white spaces as characters or not.

count_characters.tpl
<body>
Total number of characters in '{$somevalue}' is {$somevalue|count_characters}.
If you consider white spaces, then it is {$somevalue|count_characters:true}
</body>

count_characters.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->assign("somevalue","bangladesh is a small country in south asia");
$smarty->display("count_characters.tpl");
?>

Output
Total number of characters in 'bangladesh is a small country in south asia' is 36. If you
consider white space, then it is 43

 83

Download at Boykma.Com

Advanced Templating

 84

cat
cat is a concatenating modifier for Smarty, which joins two string values together. It takes one optional
parameter, which is the string value to be appended to the variable this modifier is used with.

cat.tpl
<body>
Kader {$somevalue|cat:"but he didn't like it"}
</body>

cat.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->assign("somevalue","bought a shirt yesterday");
$smarty->display("cat.tpl");
?>

Output
Kader bought a shirt yesterday but he didn't like it

count_paragraphs
This modifier is similar to count_characters except that it counts the number of paragraphs in a
given string. This modifier takes no parameter.

count_paragraphs.tpl
<body>
The total number of paragraphs in the supplied text is
{$somevalue|count_paragraphs}
</body>

count_paragraphs.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$paragraphs = <<< EOD
This is paragraph 1
This is paragraph 2
This is paragraph 3
EOD;

$smarty->assign("somevalue",$paragraphs);
$smarty->display("count_paragraphs.tpl");?>

Output
The total number of paragraphs in the supplied text is 3

Download at Boykma.Com

Chapter 5

count_sentences
This modifier counts the number of sentences in the supplied variable. This also takes no
parameter. This modifier is helpful when you want to show an excerpt from a big text paragraph
(an article or story) by truncating when the number of sentences is more than a predefined value.

count_words
This is another modifier in same group as above. It counts the number of words available in a
supplied text in a variable. This takes no parameter at all.

count_words.tpl
<body>
The total number of words in the supplied text is {$somevalue|count_words}
</body>

count_words.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$words = "smarty is a leading template engine for PHP developers. It is easy
to use and extremely flexible to manage. Its learning curve is so short.";

$smarty->assign("somevalue",$words);
$smarty->display("count_words.tpl");?>

Output
The total number of words in the supplied text is 25

date_format
The date_format modifier is used to format the date and time according to available predefined
formats. You can harness the maximum power of the native PHP date and time format function
with this modifier. Usually programmers supply the date and time as a UNIX timestamp (using the
strtotime() or mktime() PHP function) and then template designers apply these formats as they
want. This modifier takes two optional parameters: one is the date and time format string and the
other is an optional date to override the date in the variable itself. The available date and time
formats are shown here, taken as is from the Smarty manual:

Format Result

%a Abbreviated weekday name according to the current locale

%A Full weekday name according to the current locale

%b Abbreviated month name according to the current locale

%B Full month name according to the current locale

%c Preferred date and time representation for the current locale

%C Century number (the year divided by 100 and truncated to an integer, range 00 to 99)

 85

Download at Boykma.Com

Advanced Templating

 86

Format Result

%d Day of the month as a decimal number (range 00 to 31)

%D Same as %m/%d/%y

%e Day of the month as a decimal number; a single digit is preceded by a space (range 1 to 31)

%g Week-based year within century [00,99]

%G Week-based year, including the century [0000,9999]

%h Same as %b

%H Hour as a decimal number using a 24-hour clock (range 00 to 23)

%I Hour as a decimal number using a 12-hour clock (range 01 to 12)

%j Day of the year as a decimal number (range 001 to 366)

%k Hour (24-hour clock); single digits are preceded by a blank (range 0 to 23)

%l Hour as a decimal number using a 12-hour clock; single digits preceded by a space
(range 1 to 12)

%m Month as a decimal number (range 01 to 12)

%M Minute as a decimal number

%n Newline character

%p Either 'am' or 'pm' according to the given time value, or the corresponding strings for the
current locale

%r Time in a.m. and p.m. notation

%R Time in 24 hour notation

%S Second as a decimal number

%t Tab character

%T Current time, equal to %H:%M:%S

%u Weekday as a decimal number [1,7], with 1 representing Monday

%U Seek number of the current year as a decimal number, starting with the first Sunday as the first
day of the first week

%V The ISO 8601:1988 week number of the current year as a decimal number, range 01 to 53,
where week 1 is the first week that has at least 4 days in the current year, and with Monday as
the first day of the week.

%w Day of the week as a decimal, Sunday being 0

%W Week number of the current year as a decimal number, starting with the first Monday as the first
day of the first week

%x Preferred date representation for the current locale without the time

%X Preferred time representation for the current locale without the date

%y Year as a decimal number without a century (range 00 to 99)

%Y Year as a decimal number including the century

%Z Time zone or name or abbreviation

Download at Boykma.Com

Chapter 5

date_format.tpl
I was born on {$born|date_format:"%dth %b, %Y"}. It was a sunny
{$born|date_format:"%A"|lower}

date_format.php
<?
include("libs/smarty.class.PHP");
$smarty = new smarty();
$born = strtotime("08/28/1979");
$smarty->assign("born", $born);
$smarty->display("date_format.tpl");
?>

Output
I was born on 28th Aug, 1979. It was a sunny tuesday

default
default is an important modifier for template developers. It will help you publish the default
value supplied to it and indirectly check whether it contains something or not. This modifier takes
one parameter that will be considered as the default value. You may find this function handy to set
the title of each of your web pages.

default.tpl
<title>{$title|default:"Building websites with smarty"}</title>
<body>
An Example of {$title|default:"Building websites with smarty"}
</body>

default.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->display("default.tpl");
?>

Output
<title>Building websites with smarty</title>
<body>
An Example of Building websites with smarty
</body>

escape
escape is a Smarty modifier used to escape strings. It has some similar functionality to some of
PHP's built-in escaping functionality, but you can use this function in a broader scope. Using this
function you can escape a string in following modes:

 87

Download at Boykma.Com

Advanced Templating

 88

• HTML escape: escapes HTML entities
• URL escape: URL encodes strings
• Java script escape
• Single quote escape: escapes single quotes
• Hexadecimal escape: escapes strings in hexadecimal mode

Let's look at an example.

escape.tpl
1. URL escaped: {$somevalue|escape:"url"}"

1. Hex escaped: {$somevalue|escape:"hex"}"

1. Single Quote escaped: {$somevalue|escape:"quotes"}"

1. HTML escaped: {$somehtml|escape:"html"}"

1. Javascript escaped: {$somescript|escape:"url"}"

escape.php
<?
include("libs/smarty.class.PHP");
$smarty = new smarty();
$smarty->assign("somevalue", "this is peter's hen");
$smarty->assign("somehtml","This is some bold text ");
$smarty->assign("somescript","<script>alert('hello, its
javascript');</script>");
$smarty->display("escape.tpl");
?>

Output
1. URL escaped: this%20is%20peter%27s%20hen"

1. Hex escaped:
%74%68%69%73%20%69%73%20%70%65%74%65%72%27%73%20%68%65%6e"

1. Single Quote escaped: this is peter\'s hen"

1. HTML escaped: This is some bold text "

1. Javascript escaped:
%3Cscript%3Ealert%28%27hello%2C%20its%20javascript%27%29%3B%3C%2Fscript%3E"<
br />

indent
indent is a Smarty modifier used to format text. As the name suggests, it indents a block of text
by a given number of characters. This modifier takes two optional parameters. The first parameter
defines how many characters the block has to be indented by and second one specifies the
character with which to indent it. By default the second parameter is a white space. This modifier
comes in handy when you are developing pages with different text formatting.

indent.tpl
This is a sample line

{$sometext|indent:10:"#"}

Download at Boykma.Com

Chapter 5

indent.php
<?
include("libs/smarty.class.PHP");
$smarty = new smarty();
$smarty->assign("sometext","This is some text to indent");
$smarty->display("indent.tpl");
?>

Output
This is a sample line
##########This is some text to indent

lower
The lower modifier makes every character in a given string lower case. It takes no parameter at
all. It works in the same way as the lcase() function of PHP.

upper
The upper modifier works in just the opposite way to lower. It makes the characters of a given
variable on which the modifier is applied uppercase.

upper_lower.tpl
Example of upper: {$lowertext|upper}

Example of lower: {$uppertext|lower}

upper_lower.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->assign("uppertext","THESE WERE UPPERCASE");
$smarty->assign("lowertext","these were lowercase");
$smarty->display("upper_lower.tpl");
?>

Output
Example of upper: THESE WERE LOWERCASE
Example of lower: these were uppercase

nl2br
nl2br stands for new line to break. This modifier converts all new line characters to
. This
function works in the same way as the nl2br() function in PHP. This function is also extremely
helpful in different text formatting scenarios.

nl2br.tpl
Following is an example of nl2br</br>
{$sometext|nl2br}

 89

Download at Boykma.Com

Advanced Templating

 90

nl2br.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$mytext = <<< EOD
This is a single line with line break
But linebreaks are not visible in HTML.
They need to be replaced with a
 tag.
EOD;
$smarty->assign("sometext",$mytext);
$smarty->display("nl2br.tpl");
?>

Output
Following is an example of nl2br
This is a single line with line break

But linebreaks are not visible in HTML.

They need to be replaced with a
 tag.

regex_replace
regex_replace is an extremely useful and advanced Smarty modifier for experienced template
designers. Though PHP has very good support for regular expressions, Smarty developers also
included this one in Smarty. PHP supports two major styles of regex, one is POSIX Extended-
compatible regular expressions, and the other is Perl-Compatible regular expressions or PCRE.
PCRE is the more familiar style in PHP. It's faster than the POSIX Extended one. The Smarty
regex_replace modifier supports the PCRE style.

Regular expressions are beyond the scope of this book. For the sake of simplicity, we are just
covering how this specific modifier works.

regex_replace.tpl
{$email|regex_replace:"~[a-zA-Z0-9._%-]+@[a-zA-Z0-9._%-]+\.[A-Za-z]+~":"not
visible"}

regex_replace.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->assign("email","My email address is hasin@somewherein.net");
$smarty->display("regex_replace.tpl");
?>

Output
My email address is not visible

Download at Boykma.Com

Chapter 5

replace
replace is a normal modifier, which replaces some text with another portion of text. This modifier
works with plain text, not regular expressions.

replace.tpl
{$somevalue|replace:"mice":"dogs"}

replace.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->assign("somevalue", "It's raining cats & mice");
$smarty->display("replace.tpl");
?>

Output
It's raining cats & dogs

spacify
spacify is a funny modifier available, which is of no practical use in English. This modifier used to
spacify, as it's name explains, some text with a given text. That means it inserts your given text (as
parameter) between every character. It takes only one parameter, which is by default, white space.

spacify.tpl
{$somevalue|spacify}

spacify.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->assign("somevalue", "It's raining cats & dogs");
$smarty->display("spacify.tpl");
?>

Output
I t ' s r a i n i n g c a t s & d o g s

string_format
The string_format modifier is used to format a string by using predefined string formats. You
can format a number into a money format, set its decimal places and so forth. For formatting, you
can use all the available formats of PHP's built-in sprintf() function with this modifier.
Following are the formats taken as is from PHP manual.

 91

Download at Boykma.Com

Advanced Templating

 92

Format Result

% A literal percent character. No argument is required.

b The argument is treated as an integer, and presented as a binary number.

c The argument is treated as an integer, and presented as the character with that ASCII value.

d The argument is treated as an integer, and presented as a (signed) decimal number.

e The argument is treated as scientific notation (e.g. 1.2e+2).

u The argument is treated as an integer, and presented as an unsigned decimal number.

f The argument is treated as a float, and presented as a floating-point number (locale aware).

F The argument is treated as a float, and presented as a floating-point number (non-locale aware).
Available since PHP 4.3.10 and PHP 5.0.3.

o The argument is treated as an integer, and presented as an octal number.

s The argument is treated as and presented as a string.

x The argument is treated as an integer and presented as a hexadecimal number (with lowercase
letters).

X The argument is treated as an integer and presented as a hexadecimal number (with uppercase
letters).

string_format.tpl
The book costs BDT{$somevalue|string_format:"%.2f"}

string_format.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->assign("somevalue", "1200");
$smarty->display("string_format.tpl");
?>

Output
The book costs BDT1200.00

strip
strip is a necessary modifier for Smarty template designers. You can replace tabs, line breaks,
and white spaces with a single white space with the help of this modifier. This modifier takes one
parameter which is by default white space. This parameter indicates what will be the replacement
for the tabs, line breaks, and white spaces in the string on which this modifier is being applied.

Download at Boykma.Com

Chapter 5

strip_tags
The strip_tags modifier strips HTML tags from a given string. This modifier takes an optional
Boolean parameter by which you can specify which one will be used to replace the tags, white
space or nothing. By default this parameter is true, meaning tags are replaced with a white space.

strip_tags.tpl
{$sometext|strip_tags}

strip_tags.php
<?
include("libs/smarty.class.php");
$smarty->assign("sometext", "This is some Bold text");
$smarty->display("strip_tags.tpl");
?>

Output
This is some Bold text

truncate
The truncate modifier truncates a string at the given point. You can specify after how many
characters you will truncate it. This modifier is extremely helpful for article management websites
where only truncated excerpts of articles are needed to be shown in the front page. This modifier
takes three optional parameters. The first parameter is the number of characters after which the
truncation occurs. The second parameter is what will replace the truncated part of the string; by
default it is an ellipsis. The third parameter indicates whether the truncate modifier should truncate
in the middle of a word of not. If you set the third parameter as false, then it will not truncate in
the middle of a word but at the start of it.

truncate.tpl
{$sometext|truncate:18:"...":true}

{$sometext|truncate:18:"...":false}

truncate.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$smarty->assign("sometext", "This is some long text to truncate");
$smarty->display("truncate.tpl");
?>

Output
This is some lo...

This is some...

 93

Download at Boykma.Com

Advanced Templating

 94

Note that when the third parameter is true, it truncates in the middle of a word in the example.

wordwrap
The wordwrap modifier simply wraps up text with a given parameter. This modifier takes three
optional parameters. The first parameter specifies after how many character to wrap; by default it
is 80. The second parameter is the character to use as a wrapper. And the third parameter works in
the same manner as the third parameter of the truncate modifier: it determines whether to break a
word or not. In the following example, we added an additional nl2br so that the effect becomes
clear to you. As we are using default wrapper, the wordwrap modifier wraps with \n (linebreak or
newline character). The nl2br modifier converts these newline characters into
, so the wrap
becomes visible to you.

wordwrap.tpl
{$sometext|wordwrap:60|nl2br}

wordwrap.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$sometext = <<< EOD
The wordwrap modifier simply wraps up text with a given parameters. This modifier
takes three optional parameters. The first parameter is after how many character
to wrap, by default it is 80. The second optional parameter is the character to
use as wrapper. And the third parameter works in the same manner as the third
parameter of the truncate modifier, it determines whether to break inside a word
of not.
EOD;
$smarty->assign("sometext",$sometext);
$smarty->display("wordwrap.tpl");
?>

Output
The wordwrap modifier simply wraps up text with a given

parameter. This modifier takes three optional parameters.

The first parameter is after how many character to wrap, by

default it is 80. The second optional parameter is the

character to use as wrapper. And the third parameter works

in the same manner as the third parameter of the truncate modifier,

it determines whether to break inside a word of not.

Combining Modifiers
Whenever you use modifiers in your template, you can use them singly or you can combine two
modifiers and use them. Combining modifiers gives you more power over using them. Combining

Download at Boykma.Com

Chapter 5

them is easy; just add them with a pipe | sign one by one.

Let's take a look at the following example. Here we use two modifiers in combination.

date_format.tpl
I was born in {$born|date_format:"%dth %b, %Y"}. It was a sunny
{$born|date_format:"%A"|lower}

date_format.php
<?
include("libs/smarty.class.php");
$smarty = new smarty();
$born = strtotime("08/28/1979");
$smarty->assign("born", $born);
$smarty->display("date_format.tpl");
?>

Output
I was born in 28th Aug, 1979. It was a sunny tuesday

Here the Date_format modifier returns the full day name with its first character in upper case, so
we used lower modifier in combination with date_format to make it lowercase:
{$born|date_format:"%A"|lower}

That's it. There's no limit on how many modifiers you can combine together. If you can properly
use modifiers in combination, it opens the door of power to you, in many cases.

Configuration Files
Configuration files are special files to store the values of variables that could be used later by
Smarty template designers. The values you store here are treated as global variables. You must
store site configuration information that is needed by many templates in your site in the
configuration files. For example, you can store the site title, site footer info, and copyright
information in the configuration files. If you hardcode them in your template files and later need to
change them then you have to modify all of them; but this information could change often. So if
you store them in configuration files and in the template you use these configuration instead of
hard coding, that will be much more reusable. Let's look at the format of a configuration file.

Configuration files can store values under sections or without sections. Let's look at the following
configuration files:

Title = "My Sample Site"
BannerText = "Rock Yourself"
BannerBackground = #104A7B

[NavigationPanel]
THColor = #e3cb8e

[Footer]
CopyrightText = "All rights reserved by Mr X";

 95

Download at Boykma.Com

Advanced Templating

 96

If you look at the configuration file, you will see it contains one section named [NavigationPanel],
another named [Footer], and three global variables.

Now the question comes: How do we use this configuration file in practice? Smarty gives template
designers a function for this purpose. It is {config_load}.

In every template, you can use these three global variables in following way:

sometemplate.tpl
{config_load file=myconfiguration.cfg}
<title> {#Title#} </title>

That's it!, you can use any variable from the configuration file as {#VariableName#} after loading
the configuration file.

Let's see how you can use variables under a section.

footer.tpl
{config_load file=myconfiguration.cfg section= "Footer"}
<title> {#CopyrightText#} </title>

See how useful these configuration files could be. We will not go further with configuration files
in this chapter. They will come again in later chapters, in detail.

Summary
So you have an understanding on some advanced topics like deeply nested arrays and variable
modifiers, which give you the ultimate power over template designing. If you use your
imagination properly and utilize these modifiers, Smarty will prove to be the ultimate tool for you.
Also in real life you will get very complex array structures, but manipulating them will depend on
practice. All you have to do is maintain proper communication with the programmers who supply
the data. In the next chapters you will get a clear idea about Smarty functions. Happy Smartying!

Download at Boykma.Com

6
Smarty Functions

Smarty provides a wide variety of functions available to you as a template designer to use as part
of your templates. While you may never use some of these functions, it is important to get to know
their functionality, as they were created with the ultimate goal of solving everyday problems of
web developers.

As a rule of thumb, if you need some functionality in your templates and you don't know for sure
if Smarty already provides it, check if there is already a function for it. If you require some custom
functionality, consider writing a Smarty plug-in.

In this chapter you will learn about the different types of functions available in Smarty, a list of those
functions and examples of their use, and how to extend Smarty and create your own functions.

Types of Smarty Functions
Smarty as a software project tries to be simple and this is seen in the built-in functionality that is
shipped by the template compiler and parser. The template language is itself built on functions that
enable the basis of the functionality of a template, and you can extend the standard functionality of
Smarty with plug-ins. However, the built-in functions cannot be modified and you cannot create
custom functions with the same names.

Since the development team knew that they couldn't predict all uses of Smarty, or all needed
functions, they decided to create a plug-in architecture and let the end users create, modify, and
submit new plug-ins. Most of the Smarty functions are themselves implemented using this very
plug-in architecture.

Functions in Action
We will build a relatively complex site in this chapter, while explaining step by step the strengths
and weaknesses of particular functions. At the end of this chapter, you should be able to choose
the appropriate functions when you need some help from Smarty.

Let's start this process with a simple web page, a front page for a company website, along with
its template.

Download at Boykma.Com

Smarty Functions

 98

index.tpl
<html>
<head>
<title>Smarty LLC</title>
</head>
<body>
<h3>Smarty LLC</h3>
<p>We provide consulting services to the healthcare industry.</p>
<p>For more details, please contact us by email on contact@smartyllc.com</p>
</body>
</html>

index.php
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;
$smarty->display('index.tpl');
?>

This is a simple website, with just one page. Let's expand this by creating a couple of different
pages, one listing the management team of our company, and another displaying a separate screen
with a contact form instead of telling potential customers to send an email to a particular address.

Here's the page listing the management team:

about.tpl
<html>
<head>
 <title>Smarty LLC</title>
</head>
<body>

<h3>Smarty LLC: Management Team</h3>

<p>Julian Fox, CEO - Julian handles all management issues related to
the company, such as dealing with potential customers and providing a clear
strategy for services.</p>

<p>Ryan Foster, CTO - Ryan handles all technical aspects of consulting
services available through Smarty LLC.</p>

</body>
</html>

And the following will be the new contact page. We will not provide the PHP code to actually
send out emails from the contact form, but that's simple and can be looked up on the Internet.

contact.tpl
<html>
<head>
 <title>Smarty LLC</title>
</head>
<body>

<h3>Smarty LLC: Contact Us</h3>

Download at Boykma.Com

Chapter 6

<form method="post" action="contact_us.php">
<p>
 Your Name:

 <input type="text" name="name" size="40">
</p>

<p>
 Your Email:

 <input type="text" name="email" size="40">
</p>

<p>
 Your Message:

 <textarea name="message" cols="40" rows="10"></textarea>
</p>

<input type="submit" value="Send Message">
</form>

</body>
</html>

So now we have a slightly more complicated website, and some challenges are starting to appear.
Even though our collection of pages is still small, every change in a section of the site that is used
by all of these pages will require three different changes. Let's use some of Smarty features to help
us with this maintenance headache.

Action: Re-using Page Elements with the include Function
1. Create the following file and save it as header.tpl in your template directory:

<html>
<head>
 <title>Smarty LLC</title>
</head>
<body>

2. Create another file called footer.tpl in the same location, with the following
content:
</body>
</html>

3. Now make the following changes to your existing web pages:
• Replace the following HTML snippets:

<html>
<head>
<title>Smarty LLC</title>
</head>
<body>

With:
{include file="header.tpl"}

• Substitute the following:
</body>
</html>

With:
{include file="footer.tpl"}

 99

Download at Boykma.Com

Smarty Functions

4. Open your web browser and take a look at your website again. You should see
exactly what you were seeing before. Try adding an image tag to add the image
new.jpg to your header.tpl template file, and reloading the website in your
browser. You should see the new image on all the web pages, as shown:

Explanation
The interesting thing about the include() function is that it is a pretty powerful way of
modularizing your templates, and easing the maintenance work that you must do in the future.
Instead of changing all three pages when you want something changed in the header portion of
your website, all you need to do is update header.tpl.

Inserting Dynamic Content
Let's add some more details to our website by displaying the current date and time at the
headquarters of Smarty LLC. While we could use the same implementation we used above with
the

 100

include() function, we will instead use the insert() function.

This function works in almost the same way as include, with a few important differences:

• The results are not going to be cached by Smarty. This is an important detail in some
circumstances, such as when you need to be absolutely sure that some portions of
your templates are always dynamically generated.

Download at Boykma.Com

Chapter 6

• You are not actually including a file, but running a PHP function that you will need
to provide. The name attribute is what tells Smarty what function it should call. For
example, if you pass getCurrentTime to it, Smarty will call a function called
smarty_insert_getCurrentTime.

You may also assign the output of this function to a template variable, and even call a special PHP
script prior to executing it. Here's what our header.tpl file looks like now with the changes:

<html>
<head>
 <title>Smarty LLC</title>
</head>
<body>

{insert name="getCurrentTime" assign="current_time"
script="time_functions.inc.php"}

The current time is: {$current_time}

And the code for time_functions.inc.php is:
<?php
function smarty_insert_getCurrentTime()
{
 return gmdate('l, j F Y g:i a T');
}
?>

Here's what the front page of our website looks like now:

 101

Download at Boykma.Com

Smarty Functions

 102

Passing Variables to Included Templates
Another very useful feature of the include() function is the ability to pass any number of
arguments to the included templates. That allows you to include a template and override some
default behavior when passing a flag to the inner template. So instead of having to display the
current page title on each of our templates, let's create a new template file called navigation.tpl
and use this special feature. Here are the contents of the new navigation.tpl file:

<h3>Smarty LLC{if $page_title != ''}: {$page_title}{/if}</h3>

Instead of simply using the include function to add the contents of this file to your other templates,
we will also pass a variable to it. Here are the new contents of index.tpl:

{include file="header.tpl"}
{include file="navigation.tpl"}

<p>We provide consulting services to the healthcare industry.</p>

<p>For more details, please contact us by email on contact@smartyllc.com</p>

{include file="footer.tpl"}

Change the about.tpl template to the following:
{include file="header.tpl"}
{include file="navigation.tpl" page_title="Management Team"}

<p>Julian Fox, CEO - Julian handles all management issues related to
the company, such as dealing with potential customers and providing a clear
strategy for services.</p>

<p>Ryan Foster, CTO - Ryan handles all technical aspects of consulting
services available through Smarty LLC.</p>

{include file="footer.tpl"}

And change contact.tpl to have the following content:
{include file="header.tpl"}
{include file="navigation.tpl" page_title="Contact Us"}

<form method="post" action="contact_us.php">
<p>
 Your Name:

 <input type="text" name="name" size="40">
</p>

<p>
 Your Email:

 <input type="text" name="email" size="40">
</p>

<p>
 Your Message:

 <textarea name="message" cols="40" rows="10"></textarea>
</p>

<input type="submit" value="Send Message">
</form>

{include file="footer.tpl"}

Download at Boykma.Com

Chapter 6

Perform the same change across all other template files, and open the 'about' page in your browser.
You should see something like the following:

This looks exactly like what you had before, except that we are now modularizing our templates
even more. The good thing now is that we can expand our new template with bread-crumb style
navigation (that is, Home | Section | Sub-Section) in an easy way, by changing only one file.

Saving Variables in Configuration Files
It is extremely easy to pass variables to templates by using the normal PHP-based assign()
function, like the following:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

$smarty->assign('company_name', 'Smarty LLC');

$smarty->display('index.tpl');
?>

That would allow you to use the variable $company_name in your templates. While this is very
handy, it doesn't make much sense to have that same line in each of your PHP scripts. Instead of
duplicating PHP code, you can use Smarty configuration files to save variables and make them
available to your templates.

 103

Download at Boykma.Com

Smarty Functions

 104

A good example of the use of the {config_load} function is to translate your templates to several
languages, but still keep one copy of your template structure for all of these separate sites.

Instead of having several copies of the same site structure, each having its own templates, but with
hard-coded strings in each language, you can have just one site structure, and several configuration
files, one for each language.

Create a file named english.conf and save the following content in it:
global variables
company_name = "Smarty LLC"

Now change your existing navigation.tpl template file to this:
{config_load file="english.conf"}

<h3>{#company_name#}{if $page_title != ''}: {$page_title}{/if}</h3>

As you can see, you can use the variables saved in the configuration file directly in your templates.

Creating Configuration Sections for Each Page
While our existing english.conf file is pretty simple right now, it could grow quickly as we add
more pages to our website, and as we translate each section of our site to separate languages.
Instead of loading the entire configuration file as we did before, let's separate the variables of each
page into sections, and load only the appropriate sections in our templates.

1. Modify the existing english.conf file to the following (the triple quotes are required for
strings that span multiple lines):

 # global variables
 company_name = "Smarty LLC"

 [Index]
 intro_paragraph_1 = """We provide consulting services to the healthcare
 industry."""
 intro_paragraph_2 = """For more details, please contact us by email on
 contact@smartyllc.com"""

2. Change navigation.tpl back to the following:
 <h3>{#company_name#}{if $page_title != ''}: {$page_title}{/if}</h3>

3. Change index.tpl to the following:
 {config_load file="english.conf" section="Index"}
 {include file="header.tpl"}
 {include file="navigation.tpl"}

 <p>{#intro_paragraph_1#}</p>

 <p>{#intro_paragraph_2#}</p>

 {include file="footer.tpl"}

Download at Boykma.Com

Chapter 6

Firstly, notice how we pass the section name, in this case Index to the {config_load} function.
This tells Smarty that we are only interested in the variables associated with that particular section.
Also note that while we do specify the section, the global variable called company_name is still
available in navigation.tpl. The reason is that this variable is global, and will always be
available when that configuration file is loaded into the template.

The examples above set the configuration file manually to english.conf, but we could just as
well expand on this and pass a variable to the template, and dynamically set the language of our
website. It would be trivial to expand it even more and allow our visitors to choose the language of
the site that they are interested in. Consider the following changes to : navigation.tpl

<p>
 Language:
 English |
 Italian
</p>

<h3>{#company_name#}{if $page_title != ''}: {$page_title}{/if}</h3>

We are showing two links to our visitors, and allowing them to reload the current page with a
query string, ?language=en or ?language=it. With some tweaks to our existing PHP code, we
will switch languages on the fly:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

if (empty($_GET['language'])) {
 $smarty->assign('language', 'english');
} else {
 if ($_GET['language'] == 'en') {
 $smarty->assign('language', 'english');
 } elseif ($_GET['language'] == 'it') {
 $smarty->assign('language', 'italian');
 }
}

$smarty->display('index.tpl');
?>

Now change your existing index.tpl file to the following:
{config_load file="$language.conf" section="Index"}
{include file="header.tpl"}
{include file="navigation.tpl"}

<p>{#intro_paragraph_1#}</p>

<p>{#intro_paragraph_2#}</p>

{include file="footer.tpl"}

 105

Download at Boykma.Com

Smarty Functions

Let's see how this looks:

We are now dynamically selecting the appropriate language for the configuration file. You just got
yourself an easy-to-maintain international website with a few simple steps!

Handling Lists in Templates
While our templates now handle a lot of custom functionality, such as content translated into
several languages, and dynamically displaying the page title based on what value we pass when
including another file, the site is still pretty static. That is, there isn't a lot of content on the site that
is not known at the time that each particular page is requested.

Instead of hard-coding the list of available languages in navigation.tpl, let's dynamically
generate the list of languages from a PHP array passed to the template.

1. Change index.php to the following:
 <?php
 include_once('libs/Smarty.class.php');
 $smarty = new Smarty;

 if (empty($_GET['language'])) {
 $smarty->assign('language', 'english');
 } else {
 if ($_GET['language'] == 'en') {

 106

Download at Boykma.Com

Chapter 6

 $smarty->assign('language', 'english');
 } elseif ($_GET['language'] == 'it') {
 $smarty->assign('language', 'italian');
 }
 }

 // list of available languages
 $languages = array(
 'en' => 'English',
 'it' => 'Italian',
 'de' => 'German',
 'pt' => 'Portuguese'
);
 $smarty->assign('languages', $languages);

 $smarty->display('index.tpl');
 ?>

2. Now change navigation.tpl so that this array is processed and the HTML is
dynamically generated according to the values we provide from the PHP script:

 <p>
 Language:
 {foreach from=$languages key="abbreviation" item="title"}
 {$title} |
 {/foreach}
 </p>

 <h3>{#company_name#}{if $page_title != ''}: {$page_title}{/if}</h3>

3. Open up our website in your browser, and you should now see something similar to this:

 107

Download at Boykma.Com

Smarty Functions

As you can see, the {foreach} function loops through the PHP array, and displays each of its
options as a link on the page. The key attribute determines the name of the variable that will hold
the key of the array element, and item will set the name of the variable that will hold the value.

There are several other attributes and features available through the {foreach} function. Notice
how the list of languages on the previous screenshot ends with a space and the pipe character.
Let's avoid adding those extra characters by using another feature of {foreach}.

1. Change navigation.tpl to include the following content:
 <p>
 Language:
 {foreach from=$languages key="abbreviation" item="title" name="lang"}
 {$title}
 {if not $smarty.foreach.lang.last}
 |
 {/if}
 {/foreach}
 </p>

 <h3>{#company_name#}{if $page_title != ''}: {$page_title}{/if}</h3>

2. Open your browser again on the website, and notice that the layout has changed:

 108

Download at Boykma.Com

Chapter 6

There you go! The last white space and pipe characters are not being displayed anymore. By
setting the name attribute on the {foreach} call, we are able to reference back to this loop from
within your templates. The special variable $smarty.foreach.lang is how you refer to this loop,
and the last attribute will tell you whether you are at the last iteration of the loop or not.

The code basically checks whether Smarty is processing the last iteration of the loop, and will
output the space and pipe characters if that is not the case.

However, if you pay enough attention to details, you must have noticed that now the navigation
links have an extra white space before all the pipe characters. This is basically a side effect of how
we generated the HTML for the navigation links, which should look similar to the following:

<p>
 Language:
 English
 |
 Italian
 |
 German
 |
 Portuguese
</p>

You see, browsers will render a white space before the non breaking space. We can fix that with
yet another built-in Smarty function.

Removing Extra White Space from Templates
Let's change the navigation.tpl template again to remove the extra white space that ended up
being displayed when we last modified our file.

1. Open the file navigation.tpl and change it to include the following content:
 <p>
 Language:
 {foreach from=$languages key="abbreviation" item="title" name="lang"}
 {strip}
 {$title}
 {if not $smarty.foreach.lang.last}
 |
 {/if}
 {/strip}
 {/foreach}
 </p>

 <h3>{#company_name#}{if $page_title != ''}: {$page_title}{/if}</h3>

2. Reload the website again, and notice that the extra white spaces before the pipe
characters are now gone:

 109

Download at Boykma.Com

Smarty Functions

3. View the source of this page, and the navigation-related section should look
something like this:

 <p>
 Language:
 English |
 Italian |
 German |
 Portuguese</p>

Notice how it's all in the same line now. The {strip} function is very useful for these types of
cases in which white space matters in your pages, but it would be easier to maintain your website
if you could still have it all on separate lines.

Handling JavaScript Code in Templates
It may seem like embedding JavaScript code in your templates might be straightforward, but a
very important catch that you should be looking out for is that, since braces are used by Smarty as
delimiters for function names and variables, something simple like creating a JavaScript function
might result in a template parsing error. You can avoid this by following these steps.

Change header.tpl to the following:
<html>
<head>
 <title>Smarty LLC</title>
</head>

 110

Download at Boykma.Com

Chapter 6

<body>
<script language="JavaScript">
<!--
function printMessage(str)
{
 alert(str);
}
//-->
</script>

{insert name="getCurrentTime" assign="current_time"
script="time_functions.inc.php"}
The current time is: {$current_time}

Reload any page of our website (since all of our templates include header.tpl in them), and you
should see an error message similar to the following:

As you can see from the screenshot above, Smarty has a problem understanding that the function
printMessage is something related only to the JavaScript code, and should be ignored. In order to
fix this, there are two solutions using Smarty functions available to you:

• The combination of the functions {ldelim} and {rdelim}. The first one outputs the
left template delimiter, and the last one outputs the right delimiter, which happen to
be left and right braces. This is used by modifying header.tpl to use the {ldelim}
and {rdelim} functions, as follows:

 111

Download at Boykma.Com

Smarty Functions

 112

<html>
<head>
 <title>Smarty LLC</title>
</head>
<body>
 <script language="JavaScript">
 <!--
 function printMessage(str)
 {ldelim}
 alert(str);
 {rdelim}
 //-->
</script>

{insert name="getCurrentTime" assign="current_time"
script="time_functions.inc.php"}
The current time is: {$current_time}

• The {literal} block function, which tells Smarty to ignore anything found inside
the tags, {literal} and {/literal}.
We need to modify header.tpl like this to use the {literal} block function:
<html>
<head>
 <title>Smarty LLC</title>
</head>
<body>
{literal}
<script language="JavaScript">
<!--
function printMessage(str)
{
 alert(str);
}
//-->
</script>
{/literal}

{insert name="getCurrentTime" assign="current_time"
script="time_functions.inc.php"}
The current time is: {$current_time}

Changing the template using either of the options above will fix the Smarty parsing error, and our
website should start working again.

Processing Deeply Nested Arrays
While the {foreach} function is perfect for handling PHP associative arrays, the {section}
function is aimed at processing deeply nested arrays, or normal indexed arrays. Let's expand our
page that describes the management team of our company by passing a deeply nested array
describing each of the team members. This can be done by following these steps:

1. Change the existing index.php to the following:
 <?php
 include_once('libs/Smarty.class.php');
 $smarty = new Smarty;

 if (empty($_GET['language'])) {
 $smarty->assign('language', 'english');
 } else {

Download at Boykma.Com

Chapter 6

 if ($_GET['language'] == 'en') {
 $smarty->assign('language', 'english');
 } elseif ($_GET['language'] == 'it') {
 $smarty->assign('language', 'italian');
 }
 }

 $team = array(
 0 => array(
 'name' => 'Julian Fox', // crazy like a fox!
 'title' => 'CEO',
 'description' => 'Julian handles all management issues related to
 the company, such as dealing with potential
 customers and providing a clear strategy
 for services.',
),
 1 => array(
 'name' => 'Ryan Foster',
 'title' => 'CTO',
 'description' => 'Ryan handles all technical aspects of
 consulting services available through
 Smarty LLC',
),
 2 => array(
 'name' => 'Adam Salsbury', // he will sell you anything!
 'title' => 'VP Sales',
 'description' => 'Adam is the person who closes our consulting
 deals and handles all interactions with
 existing customers.',
),
);
 $smarty->assign('team', $team);

 // list of available languages
 $languages = array(
 'en' => 'English',
 'it' => 'Italian',
 'de' => 'German',
 'pt' => 'Portuguese'
);
 $smarty->assign('languages', $languages);

 $smarty->display('about.tpl');
 ?>

2. And change the about.tpl template file to the following:
 {config_load file="$language.conf" section="About"}
 {include file="header.tpl"}
 {include file="navigation.tpl" page_title="Management Team"}

 {section name="i" loop=$team}
 <p>{$team[i].name}, {$team[i].title} - {$team[i].description}</p>
 {/section}

 {include file="footer.tpl"}

 113

Download at Boykma.Com

Smarty Functions

3. Reload the management team page and see the results:

Voilà! You are now dynamically displaying the list of employees based on whatever you pass
from the PHP script. The {section} function is similar to PHP's for construct, in that it loops
through an array, and you can treat each of the elements in the array as an associative array. In our
example above, we are looping through the list of employees, and using each key in the
associative array to display the details of the employee, such as name, title, and description of
what they do in the company.

You may also utilize most of the attributes available for the {foreach} function, such as last (as
exemplified before) and more:

 114

• start: This allows you to start iterating the given array from the specified position
(the first element is zero).

• step: This allows you to set a custom step value, and skip certain values. For
instance, if you set step to 3, the loop will process records 0, 3, 6 and so on.

• max: The maximum number of times that this loop will iterate.
: Whether to display the output of this function or not. • show

• index: Displays the current iteration, starting from zero.
: Displays the previous iteration index, if any. It is set to • index_prev -1 on the first

iteration of the loop.

Download at Boykma.Com

Chapter 6

: Displays the next iteration index. • index_next

• iteration: Displays the current iteration index, starting from one.
• first: Set to true if the current iteration is the first one of the loop.

: Set to true if the current iteration is the last one of the loop. • last

However, instead of using $smarty.foreach.foreach_name.last, you will need to use
$smarty.section.section_name.last, and so on. In order to better exemplify their usage, let's
modify our management team template to display a number before the name of each employee.

Update the about.tpl file to contain the following:
{config_load file="$language.conf" section="About"}
{include file="header.tpl"}
{include file="navigation.tpl" page_title="Management Team"}
{section name="i" loop=$team}
<p>#{$smarty.section.i.iteration}: {$team[i].name}, {$team[i].title} -
{$team[i].description}</p>
{/section}
{include file="footer.tpl"}

Reload the page in your browser, and you should see something like this:

 115

Download at Boykma.Com

Smarty Functions

Cycling Through a List of Values
Another very convenient feature in Smarty is the ability to cycle through a pre-defined list of
values with the {cycle} function. We are going to modify the management team template again,
and display employees with alternating background colors.

Change your about.tpl file to include the following content:
{config_load file="$language.conf" section="About"}
{include file="header.tpl"}
{include file="navigation.tpl" page_title="Management Team"}
{section name="i" loop=$team}
{cycle assign="background_color" values="#F0F0F0,#DDDDDD"}
<p style="background: {$background_color};">#{$smarty.section.i.iteration}:
{$team[i].name}, {$team[i].title} - {$team[i].description}</p>
{/section}
{include file="footer.tpl"}

Reload the management team page and you should see the following:

As you can see above, each call to {cycle} assigned a color to the $background_color variable
by cycling through the available options, which should be separated by commas. In our example
above, we used only two different colors (or values), but you could use as many as you want, and
{cycle} will go through them all.

This is especially useful when you have a list of values such as search results to display, and want
to make it easy for users to differentiate between one row of results and the next.

 116

Download at Boykma.Com

Chapter 6

Avoiding Spam Indexers
A big problem nowadays on the Web is the epidemic of spam, ranging from pop-under
advertisements to email-based messages that try to sell you anything from weight-loss solutions to
stock tips. However, something that a lot of people don't realize is that just as Google crawls your
website to add your content to its index, spam crawlers also look on your site for possible email
addresses to send their junk to.

There are pretty reasonable business needs that dictate whether you need to display a contact email
address on your website, and if you do, Smarty is there to help you with the {mailto} function.

This function allows you to encode an email address in such a way that spam crawlers cannot
understand it as a real email address, but normal web browsers can.

Change the footer.tpl template file to the following:
<hr>
Copyright © 2005 Smarty LLC

Contact us at {mailto address="contact@smartyllc.com" subject="Smarty LLC
Contact" encode="javascript"}

</body>
</html>

Reload any of the pages on our website, and you should now see a new section of text on the
bottom of the screen, as shown:

 117

Download at Boykma.Com

Smarty Functions

 118

As you can see, it is simply displaying the email address to the browser. However, the real feature
here is what is on the HTML code. The footer.tpl portion of HTML got changed to the
following after Smarty processed it:

<hr>
Copyright © 2005 Smarty LLC

Contact us at <script type="text/javascript"
language="javascript">eval(unescape('%64%6f%63%75%6d%65%6e%74%2e%77%72%69%74%6
5%28%27%3c%61%20%68%72%65%66%3d%22%6d%61%69%6c%74%6f%3a%63%6f%6e%74%61%63%74%4
0%73%6d%61%72%74%79%6c%6c%63%2e%63%6f%6d%3f%73%75%62%6a%65%63%74%3d%53%6d%61%7
2%74%79%25%32%30%4c%4c%43%25%32%30%43%6f%6e%74%61%63%74%22%20%3e%63%6f%6e%74%6
1%63%74%40%73%6d%61%72%74%79%6c%6c%63%2e%63%6f%6d%3c%2f%61%3e%27%29%3b'))</scr
ipt>

</body>
</html>

The above will work just fine with browsers that support JavaScript, and spam crawlers will not be
able to differentiate this block of JavaScript code from the rest of the HTML.

Form-Related Functions
We will now go over some of the other convenient functions that are very useful when handling
form-related data, such as radio boxes, checkboxes, drop-down lists, and so on.

Let's start by creating a PHP script and a template file to handle a page that will allow our
prospective customers to request a consulting quote. We will need to gather information such as
their name, telephone number and the day, and a time for an initial appointment.

Here's the new request.php file:
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

if (empty($_GET['language'])) {
 $smarty->assign('language', 'english');
} else {
 if ($_GET['language'] == 'en') {
 $smarty->assign('language', 'english');
 } elseif ($_GET['language'] == 'it') {
 $smarty->assign('language', 'italian');
 }
}

// list of available languages
$languages = array(
 'en' => 'English',
 'it' => 'Italian',
 'de' => 'German',
 'pt' => 'Portuguese'
);
$smarty->assign('languages', $languages);

$smarty->display('request.tpl');
?>

And this is the template for this new page, to be named request.tpl:
{config_load file="$language.conf" section="Request"}
{include file="header.tpl"}
{include file="navigation.tpl" page_title="Request a Consulting Quote"}

Download at Boykma.Com

Chapter 6

<form method="post" action="request_quote.php">
<table border="1">
 <tr>
 <td bgcolor="{cycle values="#F0F0F0,#DDDDDD"}">Name:</td>
 <td><input type="text" name="full_name" size="40"></td>
 </tr>
 <tr>
 <td bgcolor="{cycle values="#F0F0F0,#DDDDDD"}">Phone Number:</td>
 <td><input type="text" name="phone" size="20"></td>
 </tr>
 <tr>
 <td bgcolor="{cycle values="#F0F0F0,#DDDDDD"}">
 Appointment Date and Time:
 </td>
 <td>
 {html_select_date display_years=false}
 {html_select_time display_seconds=false minute_interval=15}
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <input type="submit" value="Request">
 </td>
 </tr>
</table>
</form>

{include file="footer.tpl"}

It should look something like the following on your browser:

 119

Download at Boykma.Com

Smarty Functions

 120

This is pretty straightforward. You can see that the call to {html_select_date} will end up
displaying two different drop-down boxes, one so the user can select the month for the
appointment, and another drop-down box for the day. The call to {html_select_time} also
generated two drop-down boxes, one for the hour and the other for the minute.

However, notice that the call to {html_select_date} included a parameter display_years. If that
parameter wasn't specified, yet another drop-down box would be displayed, this time listing years.
Since our appointment form doesn't need to be that complicated, we set it to false.

Something similar also happened for the call to {html_select_time}. We passed a parameter
display_seconds with the value of false to stop Smarty from displaying a drop-down box to
select the seconds. Also, we set minute_interval to 15, so the options on the drop-down box end
up being 00, 15, 30, and 45.

More Form-Related Functions
Let's expand our Request a Consulting Quote screen to ask prospective customers a few other
questions, such as the type of consulting engagement, and payment option.

Change the request.php script to the following:
<?php
include_once('Smarty.class.php');
$smarty = new Smarty;

if (empty($_GET['language'])) {
 $smarty->assign('language', 'english');
} else {
 if ($_GET['language'] == 'en') {
 $smarty->assign('language', 'english');
 } elseif ($_GET['language'] == 'it') {
 $smarty->assign('language', 'italian');
 }
}

// list of available consulting types
$smarty->assign('types', array(
 'custom' => 'Custom Functions',
 'review' => 'Code Review',
 'database' => 'Database Design',
));

// list of possible payment options
$smarty->assign('payment', array(
 'pre' => 'Pre-paid',
 'aswego' => 'Pay as we go',
));

// list of available languages
$languages = array(
 'en' => 'English',
 'it' => 'Italian',
 'de' => 'German',
 'pt' => 'Portuguese'
);
$smarty->assign('languages', $languages);

$smarty->display('request.tpl');
?>

Download at Boykma.Com

Chapter 6

Modify the template file so it contains the following: request.tpl

{config_load file="$language.conf" section="Request"}
{include file="header.tpl"}
{include file="navigation.tpl" page_title="Request a Consulting Quote"}

<form method="post" action="request_quote.php">
<table border="1">
 <tr>
 <td bgcolor="{cycle values="#F0F0F0,#DDDDDD"}">Name:</td>
 <td><input type="text" name="full_name" size="40"></td>
 </tr>
 <tr>
 <td bgcolor="{cycle values="#F0F0F0,#DDDDDD"}">Phone Number:</td>
 <td><input type="text" name="phone" size="20"></td>
 </tr>
 <tr>
 <td bgcolor="{cycle values="#F0F0F0,#DDDDDD"}">
 Appointment Date and Time:
 </td>
 <td>
 {html_select_date display_years=false}
 {html_select_time display_seconds=false minute_interval=15}
 </td>
 </tr>
 <tr>
 <td bgcolor="{cycle values="#F0F0F0,#DDDDDD"}">
 Consulting Type:
 </td>
 <td>{html_checkboxes name="type" options=$types separator="
"}</td>
 </tr>
 <tr>
 <td bgcolor="{cycle values="#F0F0F0,#DDDDDD"}">
 Payment Option:
 </td>
 <td>{html_radios name="payment" options=$payment selected="pre"}</td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <input type="submit" value="Request">
 </td>
 </tr>
</table>
</form>

{include file="footer.tpl"}

 121

Download at Boykma.Com

Smarty Functions

Reload the page in your web browser, and you should see something like the following:

There are several interesting features in this template:

• You can build a custom list of checkboxes just by passing a PHP array to the
{html_checkboxes} function with the options parameter, and you can customize
how the checkboxes are separated. We are using line breaks here to make it easier
for our users to visualize the options of consulting types.

• You can also build a custom list of radio boxes in much the same way, and you can
also set the radio box that should be selected by default by using the selected
parameter to the {html_radios} function.

 122

Download at Boykma.Com

Chapter 6

Summary
We covered the most important Smarty functions in this chapter, such as {section}, {foreach},
{literal}, {strip}, and {cycle}, while building a somewhat complex website by starting from a
simple set of pages with not much content, and then gradually adding more information and
features to our fantasy Smarty LLC company website.

You should now be able to use most Smarty functions comfortably in your own templates, by
following the examples available throughout this chapter. Please try to remember that no matter
what you need to do in your templates, there is probably somebody else who also needed to do the
same, so a built-in Smarty function or even a plug-in might be available to do what you want.

Be sure to always check the Smarty documentation or the appropriate mailing lists. Smarty was
designed from the ground up to be easy for template designers like yourself to use, so there's a big
probability that what you need to do is already covered in the documentation. Also, there are lots
of good people that help out on Smarty-related mailing lists, so make sure to give it a try.

 123

Download at Boykma.Com

Download at Boykma.Com

7
Debugging for Designers

A basic fact for computing projects is that sooner, or later, things will inevitably go wrong. The
same is true for template designers, obviously, so understanding common problems and ways to
overcome them is a very important topic. While errors such as logical problems on your template
code are typically semantic, others are related to things like typographical errors on a template
filename that you are trying to include, or even forgetting to close a Smarty tag.

In this chapter, you will learn how to troubleshoot common Smarty errors, and logical or semantic
problems on your templates, and how to quickly get over these issues and get your productivity
back. We will do that together by building a small set of pages, and fixing problems as they occur.

Debugging Smarty Templates
Error messages are not usually displayed to users when something goes wrong with their
templates, because of the way Smarty is designed. Since Smarty parses templates and compiles
them into PHP scripts, your PHP configuration dictates whether error or warning messages will be
displayed to the user's browser. This is usually a very good thing as it will hide any problems that
might be found on your templates, but it will also prevent you from debugging problems.

Hence, the first thing that is needed in order to debug Smarty templates is to enable the proper
configuration settings in PHP to display error messages. Whenever these settings are enabled,
Smarty will start displaying debugging messages automatically.

The objective now is to find the php.ini configuration file and change the lines that set the
following directives:

• error_reporting
• display_errors

The location of the php.ini file depends on the operating system that you are using (if you are
developing locally), or the operating system of the server running your web pages. Usually, the
file can be found on C:\WINDOWS\php.ini on Windows systems, and /etc/php.ini on UNIX
systems. If you don't have access to this file, ask your system administrator for help.

Download at Boykma.Com

Debugging for Designers

 126

You will need to change the two directives to the following:

• error_reporting = E_ALL
• display_errors = On

Save the file and restart your web server. To make sure that the settings were properly updated,
create a PHP script named phpinfo.php with the following content:

<?php
phpinfo();
?>

Search the output for these two directives, and check if they are enabled.

By changing the configuration as described above, you are changing PHP's global configuration
and because of that, these changes will apply to any other site that runs off the same web server. If
this is not appropriate for you, you can also manually override these directives by including the
following PHP snippet on your scripts:

<?php
ini_set('display_errors', 1);
error_reporting(E_ALL);
?>

After performing the changes above, your PHP pages should display error messages correctly for you.
However, be sure to remember to disable these settings when you are ready to go live with your pages.

Semantic Errors
Let's start our first foray into template debugging by creating a simple PHP script and an
accompanying Smarty template. It will serve as a contact form for a fictitious company, but it will
be a good start for our examples. Here are the files:

Create a file called index.php and put the following content in it:
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

$departments = array(
 'marketing' => 'Marketing Department',
 'sales' => 'Sales Department',
 'support' => 'Customer Service Department'
);
$smarty->assign('departments', $departments);

$smarty->display('index.tpl');
?>

Create a new file called index.tpl with the following:
<html>
<head>
<title>Example Corp.</title>
</head>
<body>
<h3>Example Corp. - Contact Us</h3>

Download at Boykma.Com

Chapter 7

<p>
 Please choose the department that you are trying to contact, and your
 contact details, and we will get back to you within 48 hours.
</p>

<form method="post" action="contact_handler.php">
<table border="1">
 <tr>
 <td>Department:</td>
 <td>
 {foreach key="name" item="description" from=$department}
 <input type="radio" name="dept" value="{$name}"> {$description}

 {/foreach}
 </td>
 </tr>
 <tr>
 <td>Your Details:</td>
 <td>
 <input type="text" name="details" size="40">
 </td>
 </tr>
 <tr>
 <td colspan="2">
 Message:

 <textarea name="message" style="width: 100%;"></textarea>
 </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Send Message"></td>
 </tr>
</table>
</form>

</body>
</html>

After opening the PHP script on your web browser, your output should look like:

 127

Download at Boykma.Com

Debugging for Designers

As you can see from the screenshot on the facing page, something is clearly wrong. The template
code we created should iterate over the list of available departments, and print each as a different
radio box. However, nothing is being displayed. In this case, we first check if the PHP script is
passing the correct values to the template. We find that it is indeed passing an associative array of
department names and their descriptions.

Next, we check if the Smarty template is using the proper variable name. Aha, there is indeed a
problem here. The PHP script calls the list of department names $departments, but the Smarty
template is using the unknown variable name $department instead. By changing the template file
to reference the correct variable name, the actual department names will be displayed as shown:

Common Smarty Errors
Let's expand on our web page to maybe embed some JavaScript code on the page, so it can
validate the values on the form prior to the user actually submitting them. The best way to do this
is to trap the submission by setting an onSubmit JavaScript event handler on that form, and then
checking the values from a function. Let's do that now by modifying the file index.tpl so that it
contains the following:

<html>
<head>
<title>Example Corp.</title>
</head>

 128

Download at Boykma.Com

Chapter 7

<body>

<h3>Example Corp. - Contact Us</h3>

<p>
 Please choose the department that you are trying to contact, and your
 contact details, and we will get back to you within 48 hours.
</p>

<script language="JavaScript">
<!--
function validateForm(f)
{
 if (f.details.value == '') {
 alert('Please enter your contact details.');
 return false;
 }
 return true;
}
//-->
</script>

<form method="post" action="contact_handler.php" onSubmit="return
validateForm(this);">
<table border="1">
 <tr>
 <td>Department:</td>
 <td>
 {foreach key="name" item="description" from=$departments}
 <input type="radio" name="dept" value="{$name}"> {$description}

 {/foreach}
 </td>
 </tr>
 <tr>
 <td>Your Details:</td>
 <td>
 <input type="text" name="details" size="40">
 </td>
 </tr>
 <tr>
 <td colspan="2">
 Message:

 <textarea name="message" style="width: 100%;"></textarea>
 </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Send Message"></td>
 </tr>
</table>
</form>

</body>
</html>

This should be enough to trap the submission of the form when visitors forget to fill out their
own contact information. Let's see what it looks like on the browser:

 129

Download at Boykma.Com

Debugging for Designers

Oops, looks like something is wrong again. Notice, however, that this time there's actually some
useful information displayed above. To begin with, we have a line number this time, so we can go
directly to the template file and see what the problem is. Open index.tpl and go to the line
number in which the error is indicated. It should look like this:

As you can see from the screenshot from my text editor above, line 17 is part of the JavaScript
code that we just added to this template. The problem here is that we forgot to tell Smarty not to
parse this block of the template for variables or normal template syntax, so Smarty thinks that the
left brace is telling it to parse the JavaScript code, which gives us this nonsensical error message.

 130

Download at Boykma.Com

Chapter 7

In order to fix this, add {literal} before the <script> tag, and add {/literal} after the closing
</script> tag.

After making these changes, try opening the page again. The page should now work and look like
the following:

The lesson here is to be careful when using braces on your HTML, since it is a character that
means something important to Smarty. If you need to have normal braces on your pages, use
{literal} to tell Smarty to ignore those portions of the page.

Now let's add another feature to our contact form, so that we have a radio button that defaults to
being checked when a visitor opens the page. We will simply change the template file, and
manually check on the {foreach} loop if we should check the radio button or not.

Open index.tpl again and put the following content in it:
<html>
<head>
<title>Example Corp.</title>
</head>
<body>

<h3>Example Corp. - Contact Us</h3>

<p>
 Please choose the department that you are trying to contact, and your

 131

Download at Boykma.Com

Debugging for Designers

 132

 contact details, and we will get back to you within 48 hours.
</p>

{literal}
<script language="JavaScript">
<!--
function validateForm(f)
{
 if (f.details.value == '') {
 alert('Please enter your contact details.');
 return false;
 }
 return true;
}
//-->
</script>
{/literal}

<form method="post" action="contact_handler.php" onSubmit="return
validateForm(this);">
<table border="1">
 <tr>
 <td>Department:</td>
 <td>
 {strip}
 {foreach key="name" item="description" from=$departments}
 <input type="radio" name="dept" value="{$name}" {if $name ==
'marketing'}checked{/if}> {$description}

 {/foreach}
 </td>
 </tr>
 <tr>
 <td>Your Details:</td>
 <td>
 <input type="text" name="details" size="40">
 </td>
 </tr>
 <tr>
 <td colspan="2">
 Message:

 <textarea name="message" style="width: 100%;"></textarea>
 </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Send Message"></td>
 </tr>
</table>
</form>

</body>
</html>

Download at Boykma.Com

Chapter 7

Now open your web browser again and see how it looks. The output will be something like this:

As you can see, one of our changes introduced a bug in the template that triggered this error message.
Looks like we forgot to close the {strip} function with a {/strip} tag, hence the error above.

Let's fix the error message by changing index.tpl to the following:
<html>
<head>
<title>Example Corp.</title>
</head>
<body>

<h3>Example Corp. - Contact Us</h3>

<p>
 Please choose the department that you are trying to contact, and your
 contact details, and we will get back to you within 48 hours.
</p>

{literal}
<script language="JavaScript">
<!--
function validateForm(f)
{
 if (f.details.value == '') {
 alert('Please enter your contact details.');
 return false;
 }
 return true;
}
//-->
</script>
{/literal}

 133

Download at Boykma.Com

Debugging for Designers

<form method="post" action="contact_handler.php" onSubmit="return
validateForm(this);">
<table border="1">
 <tr>
 <td>Department:</td>
 <td>
 {strip}
 {foreach key="name" item="description" from=$departments}
 <input type="radio" name="dept" value="{$name}" {if $name ==
'marketing'}checked{/if}> {$description}

 {/foreach}
 {/strip}
 </td>
 </tr>
 <tr>
 <td>Your Details:</td>
 <td>
 <input type="text" name="details" size="40">
 </td>
 </tr>
 <tr>
 <td colspan="2">
 Message:

 <textarea name="message" style="width: 100%;"></textarea>
 </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Send Message"></td>
 </tr>
</table>
</form>

</body>
</html>

We simply added {/strip} after the {/foreach} tag. Now let's see if the error message goes away:

 134

Download at Boykma.Com

Chapter 7

Beautiful, we should be good to go!

Other Common Smarty Errors
While the errors above are pretty common, the following are not the kind of errors related to your
template coding practices, nor PHP configuration settings. Rather, they are related to system
configuration issues, like permission bits being insufficient to open a file or a directory.

• Warning: Smarty error: unable to read resource: "extra.tpl": In order to fix this
type of error, make sure that the permission bits associated with the file are the
appropriate ones for your website. That is, the web server that handles your pages
needs to be able to access this file. Also, there might be a typo on the filename that
causes this error.

• Fatal error: Smarty error: unable to write to $compile_dir: Smarty works with
your templates by parsing them, and then it compiles the templates into PHP scripts
to improve efficiency. That is, instead of having to parse the template each time your
PHP script is requested, it will compile the template into a PHP version of it, and
skip the parsing routine. It will usually only re-compile the template if it needs to,
such as when the template file is modified. The error message above is related to this
feature. The compiled templates directory (referenced as $compile_dir within
Smarty) which is usually called templates_c needs to be configured in such a way
that the web server is allowed to write new files to it. To fix this error, set the proper
permission bits to the templates_c sub-directory.

Smarty Debug Console
Another very interesting Smarty feature that is relevant to template designers is the Debug
Console. This is a feature that is totally informational, which can be used to debug problems on
your templates. It's important to note that the Debug Console will only work when the display()
function call is used for a template. If the PHP script is using fetch() instead to grab the HTML
output, Smarty will not include the Debug Console on that.

In order to enable this feature, you will need to update the index.php script we have created
throughout this chapter. Here's what the new content of index.php is supposed to be:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;
$smarty->debugging = TRUE;

$departments = array(
 'marketing' => 'Marketing Department',
 'sales' => 'Sales Department',
 'support' => 'Customer Service Department'
);
$smarty->assign('departments', $departments);

$smarty->display(index.tpl');
?>

 135

Download at Boykma.Com

Debugging for Designers

When the $smarty->debugging flag is set to TRUE, and you open your PHP script on your
browser, a pop-up window will be opened automatically with the Debug Console, and it should
look like this:

Make sure that your browser is not blocking pop-up windows from your website; otherwise the
Debug Console will never be displayed.

Summary
Smarty provides a huge list of features that are designed to help you while creating your templates,
but that comes at a price—complexity. While Smarty is a bit more complex than your usual
templating engine, its features are well worth it. We covered a few of the most common Smarty
problems, and quick ways to get past them.

While you create your templates, keep in mind that the more complex they are the harder it will be
to debug problems with them; so always strive to keep your templates as simple as possible.
Whenever you need to debug something, remember to use the Debug Console if possible.

 136

Download at Boykma.Com

8
Built-in Smarty Variables

and Methods

In order to understand Smarty variables and methods, let's first look at the Smarty library. Being a
programmer probably makes you wonder how the Smarty library was built. If we look in the
Smarty libs folder we can see four files: Config_File.class.php, debug.tpl,
Smarty.class.php, and Smarty_Compiler.class.php.

The Config_File.class.php file contains a class for reading Smarty configuration files from the
config folder. It has four configuration variables that you can edit to suit your application. These are:

Configuration Variable Application

var $overwrite = true; Controls whether variables with the same name overwrite each other.

var $booleanize = true; Controls whether config values of on/true/yes and off/false/no get converted to
Boolean values automatically.

var $read_hidden = true; Controls whether hidden config sections/vars are read from the file.

var $fix_newlines = true; Controls whether or not to fix Mac or DOS formatted newlines. If it is set to true,
\r or \r\n will be changed to \n.

The debug.tpl file is a template for formatting the debugging console. You can control the format
for the debugging console as you wish by editing the debug.tpl file. Here's a snapshot of the
debugging console for the example in Chapter 2:

Download at Boykma.Com

Built-in Smarty Variables and Methods

The Smarty_Compiler.class.php file contains the Smarty_Compiler class that is responsible for
template compilation. Basically, what it does is to check the templates for Smarty syntax and
transform it into PHP code.

The Smarty.class.php file contains the Smarty class, which is the interesting part of the library,
meaning that if we will take a good look at it and understand it we will be able to find the best
solutions for what we need to do with it.

It has a configuration section, which is basically a declaration of the class's public members. You
can either edit those members in the Smarty.class.php file or you can address them when
creating a new Smarty class to overwrite their content.

Smarty's public class members are also called built-in variables. It is always a good idea to keep
those variables handy, printed in a table, as is pretty difficult and not recommended to memorize
them all.

After the public member declaration, the Smarty class contains a set of functions that are the class
public methods, also described as built-in methods.

 138

Download at Boykma.Com

Chapter 8

Built-in Smarty Variables
We talked earlier in this book about Smarty folders, the defaults, and how they can be changed.
They are contained in a few members of the Smarty class and they can be set with a very simple
syntax, for example:

...
$smarty = new Smarty ;
$smarty->template_dir = 'templates' ;
...

Let's have a look at all the built-in variables and what they do.

$template_dir
This contains the name of the folder where templates are located. The default value of this variable
is templates meaning that it will look for the templates in the templates folder located in the
same folder as the executing PHP script, unless you specify a resource for the template. For extra
protection, you can lock this template folder from being accessed by the public, using Basic HTTP
authentication or Apache mod_rewrite.

$compile_dir
This contains the name of the folder where the PHP scripts resulting from template compilation
will be written. The default value of this variable is templates_c located in the same folder as the
executing PHP script. Since the compiled templates contain PHP code it's not a very risky
directory, but you must be sure you have write access to this folder.

$config_dir
This contains the name of the folder used to store the configuration files used in the templates. The
default value of this variable is configs located in the same folder as the executing PHP script.
For extra protection, you can lock this folder from being accessed by the public, using Basic
HTTP authentication or Apache mod_rewrite.

$plugins_dir
This contains the name of the folder where Smarty looks for the plug-ins that will be loaded. The
default value of this variable is plug-ins in the SMARTY_DIR folder. If an absolute path to the
plug-ins folder is not supplied, Smarty will first look for the folder contained in this variable in the
SMARTY_DIR folder. If it's not found there, will look for it in the current working directory, then in
each entry in the PHP include path. That's why, for best performance it is recommended to use an
absolute path or a path relative to SMARTY_DIR, else time is consumed in the search of the plug-ins
folder when we need to load a plug-in.

$debugging
This is a Boolean variable that enables or disables the debugging console. The default value
of this variable is false and it is not recommended to set it to true globally, especially in the
production environment.

 139

Download at Boykma.Com

Built-in Smarty Variables and Methods

 140

$error_reporting
When this variable contains a non-null value, the value will be used as PHP's error_reporting-level
inside display() and fetch(). If debugging is enabled, this variable has no effect.

$debug_tpl
This contains the name of the template use for formatting the debugging console. The default is
debug.tpl located in the SMARTY_DIR folder.

$debugging_ctrl
This determines whether debugging can be enabled from the browser. It has two possible values:

• NONE: This is the default value and means that no alternative way to enable
debugging is allowed except through the $debugging variable.

• URL: This allows debugging to be enabled via the web browser. When the variable
has this value, you can enable the debugging console by using SMARTY_DEBUG in the
URL like http://127.0.0.1/index.php?SMARTY_DEBUG.

If the $debugging variable is set to true, the value of this variable is ignored.

$compile_check
This is a Boolean variable that tells Smarty whether or not to check if a template has modified its
content. The default value of the variable is true, which means that Smarty will check to see if a
template has changed its timestamp from the last compilation. If it has, Smarty will recompile that
template. If you set the variable to false, Smarty will only compile a template upon it's first invocation
and will not recompile it, irrespective of if you modified it or not. Setting the variable to false will
improve performance on a project that doesn't change (for example, when going into production).

If caching is enabled and $compile_check is set to true, the cache files will be regenerated at
every modification of the templates or configuration files involved.

$force_compile
This is a Boolean variable that tells Smarty if you want to compile the template every time it is
invoked. This variable overrides the $compile_check variable. The default value is false and when
it is set to true, the templates will be compiled upon every invocation, which can be useful for
debugging and development. If caching is enabled, the cache files will be regenerated every time.

$caching
This is an integer variable that tells Smarty whether or not to cache the output of the templates.
The variable has three possible values.

• 0: This is the default value and it disables template caching.
• 1: Enables caching and tells Smarty to use the variable $cache_lifetime in the

Smarty class to determine if the cache has expired, meaning that it will check the
validity of the cache by using the current value of $cache_lifetime.

Download at Boykma.Com

http://127.0.0.1/index.php?SMARTY_DEBUG

Chapter 8

2: Enables caching and tells Smarty to use the variable • $cache_lifetime in the
cache file to determine if the cache has expired, meaning that it will check the
validity of the cache by using the value of $cache_lifetime at the time when the
cache files were created.

$cache_dir
This contains the name of the folder where template caches are stored. The default is cache in the
same folder as the executing PHP script. For extra protection, you can lock this template folder
from being accessed by the public, using Basic HTTP authentication or Apache mod_rewrite.

$cache_lifetime
This is an integer variable that contains the number of seconds that a template cache is valid. The
default value of the variable is 3600, meaning that template caches expire in one hour. Using 0 as
$cache_lifetime value tells Smarty to always regenerate the cache. This is good only for testing
and development, not to disable caching as it will consume system resources to regenerate the
cache (while $caching = 'false' won't). A value of -1 tells Smarty never to regenerate the cache.

$cache_modified_check
This is a Boolean variable only used when caching is enabled. The default value is false, but if it
is set to true, Smarty will respect the If-Modified-Since headers sent from the client. In this
case, if the cached file was not regenerated since the last visit, a 304 Not Modified header will be
sent instead of the content. The cached content must not include insert tags.

$php_handling
This is a variable that tells Smarty how to handle PHP code between <?php ... ?> tags in the
templates. The variable has four possible values that don't affect the PHP code between {php} and
{/php} tags in the template. These are:

• SMARTY_PHP_PASSTHRU: This is the default value and means that Smarty will print
tags as plain text.

• SMARTY_PHP_QUOTE: Smarty will quote tags as HTML entities.
• SMARTY_PHP_REMOVE: Smarty will remove tags from templates.
• SMARTY_PHP_ALLOW: Smarty will execute the PHP tags as PHP code.

$security
This is a Boolean variable that enables or disables template security features. The default value
of this variable is false and when it is set to true, many things are restricted in templates that
normally would go unchecked. Enabling template security is good when you have untrusted
parties uploading or editing templates (for example, via FTP) because it reduces the risk of
compromising the system through the template language. Unless the variable $security_settings
specifies other things, enabling security gives you the following features:

 141

Download at Boykma.Com

Built-in Smarty Variables and Methods

 142

• $php_handling is overwritten to SMARTY_PHP_PASSTHRU if it was set to
SMARTY_PHP_ALLOW.

• PHP functions are not allowed in IF statements, except those that are specified in
$security_settings.

• Templates can be included only from folders listed in the $secure_dir array.
• Local files can be accessed only from folders included in the $secure_dir array

using {fetch}.
• The tags {php}, {/php} are not allowed in templates.
• Smarty will not accept PHP functions as modifiers, except any that are specified in

$security_settings.

$secure_dir
This is an array of folders that contain templates considered secure. The value of $template_dir
is implicitly in this array. When security is enabled, {include} and {fetch} will use this variable
to access templates and files.

$security_settings
This is an array used to specify security settings when security is enabled. The array contains:

• PHP_HANDLING: The default is false. If it is set to true the $php_handling
variable is not checked.

• IF_FUNCS: An array of PHP functions allowed in IF statements. The default PHP
functions allowed are array, list, isset, empty, count, sizeof, in_array,
is_array, true, and false.

• INCLUDE_ANY: The default is false. If it is set to true, $security_dir is
ignored, meaning that templates can be included from anywhere.

• PHP_TAGS: The default is false. If it is set to true the {php}{/php} tags are
allowed in templates.

• MODIFIER_FUNCS: An array containing the names of PHP functions allowed as
modifiers. The default is an array containing count.

$trusted_dir
This is an array containing the names of the folders where trusted PHP scripts reside. The variable
has effect only when security is enabled and contains the paths to the PHP scripts that can be
executed directly from templates using {include php}.

$left_delimiter
This is a variable containing the left delimiter used by the template language. The default is {.

$right_delimiter
This is a variable containing the right delimiter used by the template language. The default is }.

Download at Boykma.Com

Chapter 8

$request_vars_order
This contains the order in which the request variables are registered. This variable is similar to the
variables_order variable in php.ini. The default is EGPCS where E means environment, G means
get, P means post, C means cookies, S means server.

$request_use_auto_globals
This is a Boolean variable that indicates whether $HTTP_*_VARS[] are used as request-vars or
$_*[] vars. The default is false which means that $HTTP_*_VARS[] are used. If it is set to true,
the variable $request_vars_order has no effect; instead gpc_order from php.ini is used. This
variable affects templates that use {smarty.request.*}, {smarty.get.*}, and so on.

$compile_id
This is a string variable used for different sets of compiled files for the same template. This is
useful for internationalization. Instead of creating different sets of templates for each language you
can set different compile_ids like en, fr, and so on.

$use_sub_dirs
This is a Boolean variable that tells Smarty whether or not to use sub-directories in the $cache_dir
and $compile_dir folders. The default value of this variable is false. Sub-directories are better
organized but may not work if PHP safe mode is enabled.

$default_modifiers
This is an array containing a list of modifiers to apply to all template variables. The default is a
null array, but if you want, for example to HTML-escape all variables by default, use
array('escape:"htmlall"'). If you want a variable not to go through the default modifiers, use
the syntax {$var|smarty:nodefaults}.

$default_resource_type
This tells Smarty what resource type to use when one is not specified at the beginning of resource
path. For example:

$smarty->display('file:index.tpl'); // will use file resource type
$smarty->display('db:index.tpl'); // will use database resource type
$smarty->display('index.tpl'); // will use the default resource type

The same happens with {include file = 'file:index.tpl'}.

The default value of this variable is file.

$cache_handler_func
This specifies the function used for file caching. The default is null, which means the default
(built-in) caching function is used.

 143

Download at Boykma.Com

Built-in Smarty Variables and Methods

 144

$autoload_filters
This is an array containing a list of filters that Smarty should automatically load. The default is an
empty array.

$config_overwrite
This is a Boolean variable that tells Smarty whether to overwrite configuration file variables with
the same name or not. The default value of this variable is true. If it is set to false the variables
with the same name will be pushed into an array.

$config_booleanize
This is a Boolean variable that tells Smarty whether to automatically booleanize configuration file
variables. The default is true, meaning that every variable containing a value of on, off, yes, no,
true, or false will automatically be converted to the Boolean variable type.

$config_read_hidden
This is a Boolean variable that tells Smarty if hidden sections (sections beginning with a period) in
the configuration files can be read by templates. The default is false because the point of hidden
sections is that the application can read them but the templates can't.

$config_fix_newlines
This is a Boolean variable that tells Smarty whether or not to convert Mac and DOS newline
characters (\r or \r\n) to \n when they are parsed. The default value of this variable is true.

$default_template_handler_func
This contains the name of a PHP function that will be executed if a template cannot be found from
its resource.

$compiler_file
This is a variable that contains the name of the file in which the Smarty compiler class resides.
The value can be a full pathname or relative to the php_include path. The default value of this
variable is Smarty_Compiler.class.php.

$compiler_class
This contains the name of the class used for compiling templates. The default value of this
variable is Smarty_Compiler.

$config_class
This contains the class used to load configuration variables. The default value of this variable
is Config_File.

Download at Boykma.Com

Chapter 8

Handy Built-in Smarty Variables Table
After having a look at all the variables and what they do, we will present all these variables in a
table with their defaults and a small explanation.

Having the built-in Smarty variables in a table is always handy, especially for beginners and
intermediate users. Only after using Smarty for long enough, will you be able to memorize most
of these variables, but even then you can keep a printed table of the variables to look for what you
need faster.

Variables Description

var $template_dir = 'templates'; The name of the directory where templates are located.

var $compile_dir = 'templates_c'; The directory where compiled templates are located.

var $config_dir = 'configs'; The directory where config files are located.

var $plug-ins_dir = array('plug-ins'); An array of directories searched for plug-ins.

var $debugging = false; If debugging is enabled, a debug console window will
display when the page loads (make sure your browser
allows pop-ups).

var $error_reporting = null; When set, Smarty uses this value as error_reporting-level.

var $debug_tpl = ''; This is the path to the debug console template. If not set,
the default one will be used.

var $debugging_ctrl = 'NONE'; This determines if debugging can be enabled from
the browser.
NONE => no debugging control allowed.
URL => enable debugging when SMARTY_DEBUG is found
in the URL (for example,
http://127.0.0.1/index.php?SMARTY_DEBUG).

var $compile_check = true; This tells Smarty whether to check for recompiling or not.
Recompiling does not need to happen unless a template or
config file is changed. Typically you enable this during
development, and disable it for production.

var $force_compile = false; This forces templates to compile every time. Useful for
development or debugging.

var $caching = 0; This enables template caching.
0 = no caching
1 = use class cache_lifetime value
2 = use cache_lifetime in cache file

var $cache_dir = 'cache'; The name of the directory for cache files.

var $cache_lifetime = 3600; This is the number of seconds cached content will persist.
0 = always regenerate cache
-1 = never expires

 145

Download at Boykma.Com

http://127.0.0.1/index.php?SMARTY_DEBUG

Built-in Smarty Variables and Methods

 146

Variables Description

var $cache_modified_check = false; Only used when $caching is enabled. If true, then If-
Modified-Since headers are respected with cached content,
and appropriate HTTP headers are sent. This way repeated
hits to a cached page do not send the entire page to the
client every time.

var $php_handling =
SMARTY_PHP_PASSTHRU;

This determines how Smarty handles "<?php ... ?>" tags in
templates. Possible values:
SMARTY_PHP_PASSTHRU—print tags as plain text
SMARTY_PHP_QUOTE—escape tags as entities
SMARTY_PHP_REMOVE—remove php tags
SMARTY_PHP_ALLOW—execute php tags

var $security = false; This enables template security. When enabled, many things
are restricted in the templates that normally would go
unchecked. This is useful when untrusted parties are editing
templates and you want a reasonable level of security. (no
direct execution of PHP in templates for example).

var $secure_dir = array(); This is the list of template directories that are considered
secure. This is used only if {@link $security} is enabled.
One directory per array element. {@link $template_dir} is in
this list implicitly.

var $security_settings = array(
'PHP_HANDLING' => false,
'IF_FUNCS' => array('array', 'list', 'isset',
'empty', 'count', 'sizeof', 'in_array', 'is_array',
'true', 'false'),
'INCLUDE_ANY' => false,
'PHP_TAGS' => false,
'MODIFIER_FUNCS' => array('count'),
'ALLOW_CONSTANTS' => false);

These are the security settings for Smarty. They are used
only when {@link $security} is enabled.

var $trusted_dir = array(); This is an array of directories where trusted PHP scripts
reside. {@link $security} is disabled during their
inclusion/execution.

var $left_delimiter = '{'; The left delimiter used for the template tags.

var $right_delimiter = '}'; The right delimiter used for the template tags.

var $request_vars_order = 'EGPCS'; The order in which request variables are registered, similar
to variables_order in php.ini E = Environment, G = GET, P =
POST, C = Cookies, S = Server.

var $request_use_auto_globals = true; Indicates whether $HTTP_*_VARS[]
(request_use_auto_globals=false) are used as request-vars
or $_*[]-vars. note: if request_use_auto_globals is true, then
$request_vars_order has no effect, but the php-ini-value
"gpc_order" is used.

Download at Boykma.Com

Chapter 8

Variables Description

var $compile_id = null; Set this if you want different sets of compiled files for the
same templates. This is useful for things like different
languages. Instead of creating separate sets of templates
per language, you set different compile_ids like 'en' and 'de'.

var $use_sub_dirs = false; This tells Smarty whether or not to use sub-directories in the
cache/ and templates_c/ directories. Sub-directories better
organized, but may not work well with PHP safe mode enabled.

var $default_modifiers = array(); This is a list of the modifiers to apply to all template variables.
Put each modifier in a separate array element in the order
you want them applied. Example:
<code>array('escape:"htmlall"');</code>

var $default_resource_type = 'file'; This is the resource type to be used when not specified at
the beginning of the resource path. Examples:
$smarty->display('file:index.tpl');
$smarty->display('db:index.tpl');
$smarty->display('index.tpl'); // will use default resource type
{include file="file:index.tpl"}
{include file="db:index.tpl"}
{include file="index.tpl"} {* will use default resource type *}

var $cache_handler_func = null; The function used for cache file handling. If not set, built-in
caching is used.

var $autoload_filters = array(); This indicates which filters are automatically loaded into Smarty.

var $config_overwrite = true; This determines if config file vars of the same name
overwrite each other or not. If it is disabled, duplicated
variables are accumulated in an array.

var $config_booleanize = true; This determines whether or not to automatically booleanize
config file variables. If enabled, then the strings "on", "true",
and "yes" are treated as Boolean true, and "off", "false",
and "no" are treated as Boolean false.

var $config_read_hidden = false; This determines whether hidden sections [.foobar] are
readable from the templates or not. Normally you would
never allow this since that is the point behind hidden sections:
the application can access them, but the templates cannot.

var $config_fix_newlines = true; This determines whether or not to automatically fix newlines
in config files. It basically converts \r (Mac) or \r\n (DOS) to \n

var $default_template_handler_func = ''; If a template cannot be found, this PHP function will be
executed. Useful for creating templates on-the-fly or other
special action.

var $compiler_file =
'Smarty_Compiler.class.php';

The file that contains the compiler class. This can be a full
pathname, or relative to the php_include path.

var $compiler_class = 'Smarty_Compiler'; The class used for compiling templates.

var $config_class = 'Config_File'; The class used to load config vars.

 147

Download at Boykma.Com

Built-in Smarty Variables and Methods

 148

Built-in Smarty Methods
Methods are the Smarty class public functions used for intercommunication between the
application and the templates. We will explain now how they are built and the syntax of all
methods, and in the next chapter we will discuss how to optimize the usage of those methods.

assign

void assign (mixed var)
void assign (string varname, mixed var)

The assign method is used to pass variables to templates. You can either pass pairs of name and
value or an associative array containing name and value pairs.

<?php
$smarty = new Smarty;
$website = 'http://www.packtpub.com';

// Pass pairs to template
$smarty->assign('publisher','Packt Publishing');
//or
$smarty->assign('website',$website);

// Pass an associative array
$smarty->assign(array("publisher" => "Packt Publishing", "website" =>
$website));
?>

The parameter varname is then used in the templates, for example:
<html>
<body>
Publisher : {$publisher}
</body>
</html>

assign_by_ref

void assign_by_ref (string varname, mixed var)

The assign_by_ref method is used to pass values to templates by reference instead of creating
a copy of the value and passing it as in the assign method. Referencing is a PHP method that is
different from the C pointers method. In PHP, variables and content are different, so you can use
different names for the same content. Modifying the content of a reference variable will modify the
content of all variables that refer that content. For objectsit is better to use the assign_by_ref
method because in this way you avoid making a copy of the object in memory, thus making things
a bit faster.

The code shown next has the same effect for the template designer. However, the internal
mechanism will not make a copy of the variable in memory like in the assign method, but if the
template designer makes any modifications on the variable's content, the content will be modified
in the $website variable in our PHP file.

Download at Boykma.Com

Chapter 8

<?php
$smarty = new Smarty;
$website = 'http://www.packtbub.com';

$smarty->assign_by_ref('website',$website);
?>

Example: Working of assign and assign_by_ref
Let's see for ourselves how the assign() and assign_by_ref() methods work and what effect
they have on the variables.

We will create a simple page, just to get the idea behind the assign() and assign_by_ref()
methods. First, let's create a file named index.php in the document root of our server, like this:

<?php

require("libs/Smarty.class.php");

$publisher='Packt Publishing';
$website = 'http://www.packtpub.com';

$smarty = new Smarty;

$smarty->assign_by_ref('publisher',$publisher);
$smarty->assign('website',$website);

$smarty->display('index.tpl');

print ' <hr>
 <h3> Hello, I am index.php. First, I displayed the index.tpl template.
</h3>
 Now we will see what happened to the content our variables:

 The $publisher variable was sent using assign_by_ref method
 and now contains '. $publisher .'

 and the $website variable was sent using assign method
 and now contains '. $website ;

?>

Then, go to the templates folder and create a file named index.tpl, like this:
<html>
<head> <title> Example of assign and assign_by_ref </title>
</head>

<body>

<h3> Hello, I am the template index.tpl and I say: </h3>

I received the value of variable $publisher :
 {$publisher}

I received the value of variable $website :
 {$website}

I will apply the UPPER modifier on both variables by doing :

 assign var="publisher" value=$publisher|upper

 assign var="website" value=$website|upper

 {assign var="publisher" value=$publisher|upper}
 {assign var="website" value=$website|upper}
...Done !

 Now, $publisher is:
 {$publisher}

 149

Download at Boykma.Com

Built-in Smarty Variables and Methods

and $website is
 {$website}

<h3> End of Template index.tpl </h3>

How it Works
We have created a file

 150

index.php in which we have two variables—$publisher and $website.
They contain the values Packt Publishing and http://www.packtpub.com.

We will assign the first variable ($publisher) by reference to the templates and the second
($website) normally using the assign() method. Next, we will display index.tpl, which will
print the content of the variables received from index.php. After that, the variables will be
modified using the upper modifier:

{assign var="publisher" value=$publisher|upper}
{assign var="website" value=$website|upper}

The content of the variables is printed again. This ends index.tpl, so index.php will continue
to execute.

The next command in index.php is to print the content of the $publisher and $website
variables. We will see that the variable sent by reference modified its value while the other didn't,
because a copy of its content was modified and not the actual content of the variable.

The Result

Download at Boykma.Com

Chapter 8

Just as we expected, the content of the $publisher variable, which was sent to the template
using assign_by_ref() method, changed to PACKT PUBLISHING, and the content of the
$website variable was not modified, even if it was modified in the template, because it was sent
using the assign() method.

append

void append (mixed var)
void append (string varname, mixed var [, bool merge])

This method is used to append an element to an assigned array. If varname is not an array it will be
converted to array and then the element appended to it. You can either pass pairs of name and
value or an associative array containing name and value pairs as in the assign method. The
optional parameter merge is false by default and if it is set to true the value will be merged with
the array, not appended. Please note that this is different from the array_merge() function in PHP,
which, in the case of numerically indexed arrays wipes out the numerical keys and renumbers
them. Merging numerically indexed arrays with this method may result in non-sequential keys,
and hence it's not recommended.

<?php
$smarty = new Smarty;
$website = 'http://www.packtpub.com';

// Append pairs
$smarty->append("publisher","Packt Publishing");
//or
$smarty->append("website",$website);

// Append an associative array
$smarty->append(array("publisher" => "Packt Publishing", "website" =>
$website));
?>

append_by_ref

void append_by_ref (string varname, mixed var [, bool merge])

This method is used to append values to assigned arrays by reference. This method has the same
effect as the append() method except that instead of sending a copy of the content of the variable
it will send a reference of the content.

clear_assign

void clear_assign (mixed var)

This method is used to clear the value of an assigned variable. Parameters can be either the name
of a variable or an array containing a list of variable names.

 151

Download at Boykma.Com

Built-in Smarty Variables and Methods

 152

<?php
...
//clear a single variable
$smarty->clear_assign("publisher");

//clear more variables
$smarty->clear_assign(array("publisher","website"));
...
?>

register_function

void register_function (string name, mixed impl [, bool cacheable [, mixed
cache_attrs]])

This method dynamically registers template function plug-ins. The parameters are the name of the
function used in templates, the name of the PHP function that implements the plug-in, a Boolean
parameter, which specifies whether or not this plug-in is cacheable, and an array of attribute
names that should be cached.

The impl parameter can be:

• A string containing the name of a PHP function
• An array of the form array(&$object, $method) with &$object being a reference

of an object and $method a method of that object
• An array of the form array(&$class, $method) with $class being a class name and

$method a method of that class
 <?php
...
 $smarty->register_function("copyright","print_copyright");

 function print_copyright($params)
 {
 $year = params ['year'];
 return('© Copyright '. $year .' Packt Publishing. All rights reserved');
 }
...
 ?>

Now, from the templates we can use the following to print © Copyright 2005 Packt Publishing. All
rights reserved

{copyright year="2005"}

unregister_function

void unregister_function (string name)

This method is used to dynamically unregister a template function plug-in. It has only one
parameter, which is the template function name. For example:

Download at Boykma.Com

Chapter 8

<?php
...
$smarty->unregister_function("assign");
...
?>

will not allow template designers to use the assign() function.

register_object

void register_object (string object_name, object object,
array allowed_methods_properties, boolean format, array block_methods)

This method is used to register an object that will be used in templates. The method's
parameters are:

object_name: The name of the template object. •
object: This is a reference to the PHP object. •
allowed_methods_properties: An array containing a list with the object's allowed
methods. If the array is empty, all methods will be allowed.

•

format: A Boolean variable that specifies whether the arguments will be in Smarty
format or traditional.

•

block_methods: An array containing methods that should be treated as blocks,
meaning they will have a closing tag in the template, e.g.

•
{object->method} ...

{/object->method}. It only has effect if format is true.

unregister_object

void unregister_object (string object_name)

This method unregisters template objects. The parameter is the template object's name.

register_block

void register_block (string name, mixed impl, [bool cacheable, [mixed
cache_attrs]])

This method is used to dynamically register block function plug-ins. The parameters are the same
as for the register_function method, and the effect of this method is almost the same, except
that this is a block function.

<?php
...
$smarty->register_block("ban","check_words");

function check_words($params , $content, &$smarty, &$repeat)
{

 153

Download at Boykma.Com

Built-in Smarty Variables and Methods

 154

 $bad_words = explode(" ",$params['words']);
 $words = explode(" ",$content);

for($i=0; $i<sizeof($words); $i++)
{

for($j=0; $j<sizeof($bad_words); $j++)
if ($words[$i] == $bad_words[$j])
 {
 $words[$i] = 'XXXXX';
 }

 }
 $output = implode(" ",$words);
 return $output;
}
...
?>

Now, we can use the block function plug-in like this:
{ban words="abc xyz"}
I think this abc has a nice xyz
{/ban}

This will output I think this XXXXX has a nice XXXXX.

unregister_block

void unregister_block (string name)

This method is used to dynamically unregister a block function plug-in. The parameter is the block
function name we need to unregister.

register_compiler_function

void register_compiler_function (string name, mixed impl, [bool
cacheable])

This method is used to dynamically register a compiler function plug-in. Its parameters are the
compiler function's name, the PHP function that implements it, and a Boolean parameter for
caching, which is set to true by default.

The impl parameter can be:

• A string containing the name of a PHP function
• An array of the form array(&$object, $method) with &$object being a reference

of an object and $method a method of that object
• An array of the form array(&$class, $method) with $class being a class name and

$method a method of that class

unregister_compiler_function

void unregister_compiler_function (string name)

Download at Boykma.Com

Chapter 8

This method is used to dynamically unregister a compiler function plug-in. The parameter is the
compiler function's name.

register_modifier

void register_modifier (string name, mixed impl)

This method is used to dynamically register a modifier plug-in. The first parameter is the name of
the modifier and the second is the PHP function that implements the modifier. The impl parameter
is similar to the impl parameter in the register_compiler_function() method.

<?php
...
$smarty->register_modifier("len","strlen");
...
?>

Now if we use it in the templates, will output the length of the string variable. {var|len}

unregister_modifier

void unregister_modifier (string name)

This method is used to dynamically unregister a modifier plug-in. The parameter is the name of
the modifier plug-in to unregister.

register_resource

void register_resource (string name, array resource_funcs)

This method is used to dynamically register a resource plug-in. The first parameter is the resource
name and the second is an array of PHP functions implementing the resource. The
resource_funcs must be an array of four or five elements. If the array has four elements, the
elements represent function callbacks for source, timestamp, secure, and trusted and in the case
of a 5-element array, the first element must be an object reference or a class name of the object or
class implementing the resource, and the next four elements must be method names implementing
source, timestamp, secure, and trusted.

<?php
...
$smarty->register_resource("db", array("db_get_template",
"db_get_timestamp",
"db_get_secure",
"db_get_trusted"));
...
?>

 155

Download at Boykma.Com

Built-in Smarty Variables and Methods

 156

unregister_resource

void unregister_resource (string name)

This method is used to dynamically unregister a resource plug-in. The parameter is the name of
the resource plug-in.

register_prefilter

void register_prefilter (mixed function)

This method is used to dynamically register a prefilter function to apply to a template before
compiling. The parameter is the PHP function callback, which can be:

• A string containing the name of a PHP function
• An array of the form array(&$object, $method) with &$object being a reference

of an object and $method a method of that object
• An array of the form array(&$class, $method) with $class being a class name and

$method a method of that class

unregister_prefilter

void unregister_prefilter (string function_name)

This method is used to dynamically unregister a prefilter function. The parameter is the prefilter name.

register_postfilter

void register_postfilter (mixed function)

This method is used to dynamically register a postfilter function to apply to a compiled template
after compilation. The parameter is the PHP function callback, which can be:

• A string containing the name of a PHP function
• An array of the form array(&$object, $method) with &$object being a reference

of an object and $method a method of that object
• An array of the form array(&$class, $method) with $class being a class name and

$method a method of that class

Download at Boykma.Com

Chapter 8

unregister_postfilter

void unregister_postfilter (string function_name)

This method is used to dynamically unregister a postfilter function. The parameter is the
postfilter name.

register_outputfilter

void register_outputfilter (mixed function)

This method is used to dynamically register an output filter function to apply to a template output.
The parameter is the PHP function callback, which can be:

• A string containing the name of a PHP function
• An array of the form array(&$object, $method) with &$object being a reference

of an object and $method a method of that object
• An array of the form array(&$class, $method) with $class being a class name and

$method a method of that class

unregister_outputfilter

void unregister_outputfilter (string function_name)

This method is used to dynamically unregister an output filter function. The parameter is the
outputfilter name.

load_filter

void load_filter (string type, string name)

This method is used to load a filter plug-in of specified name and type. The first parameter can be
pre for prefilters, post for post filters, or output for output filters. The second parameter is the
name of the filter plug-in.

<?php
...
// load the built-in outputfilter trimwhitespaces
$smarty->load_filter('output','trimwhitespaces');
...
?>

 157

Download at Boykma.Com

Built-in Smarty Variables and Methods

 158

clear_cache

void clear_cache (string template [, string cache_id [, string compile_id
[, int expire_time]]])

This method is used to clear the cached content for a certain template. The first parameter is the
template name. The second optional parameter is the cache_id of the template in case of multiple
caches. The third optional parameter is compile_id and the fourth represents the minimum age in
seconds the cache must be before it will be cleared.

<?php
...
// clear the cache for index.tpl
$smarty->clear_cache("index.tpl");

//clear the cache with cache id 1 in an multiple-cache template
$smarty->clear_cache("index.tpl","1");
...
?>

clear_all_cache

void clear_all_cache ([int expire_time])

This method is used to clear the entire template cache (for all templates). It has an optional
parameter, which specifies the minimum age in seconds the cache must be before it will be cleared.

is_cached

bool is_cached (string template [, string cache_id [, string
compile_id]])

This method returns true if a valid cache is found for the template specified by the first parameter.
If the template has multiple caches you can specify a cache_id optionally and/or a compile_id. If
the is_cached method returns true, the cached content is loaded and stored internally. That
means that display and fetch methods will return the cached output without trying to reload the
cache file. Also, after is_cached has returned true, the clear_cache() method has no effect.

clear_all_assign

void clear_all_assign (void)

This method will clear all the assigned template variables.

Download at Boykma.Com

Chapter 8

clear_compiled_tpl

void clear_compiled_tpl ([string tpl_file [, string compile_id [, int
exp_time]]])

This method clears the compiled template of the specified template, or all compiled templates if
one is not specified. If you pass the compile_id parameter, only the compiled template for this
compile_id is cleared. The third optional parameter is the age in seconds that the compiled
templates must be before clearing.

template_exists

bool template_exists (string template)

This method checks whether the specified template exists or not. The parameter can be a resource
string specifying a template or a path to the template in the file system.

get_template_vars

array get_template_vars ([string varname])

This method will return an array containing all template variables values or the given assigned
variable value.

<?php
...
// get all assigned variables in an array
$variables = $smarty->get_template_vars();

// get the variable publisher
$publisher = $smarty->get_template_vars('publisher');
...
?>

get_config_vars

array get_config_vars ([string varname])

This method will return an array containing all configuration variables values or the given
assigned variable value.

trigger_error

void trigger_error (string error_msg [, int level])

 159

Download at Boykma.Com

Built-in Smarty Variables and Methods

 160

This method is used to output an error message using Smarty. The first parameter is the error
message and the second optional parameter can be one of the values for the PHP function
trigger_error(). The default value of the level parameter is E_USER_WARNING.

display

void display (string template [, string cache_id [, string compile_id]])

This method displays the template. The first parameter is the template name with or without the
resource type and path. The second optional parameter is cache_id for multiple caches and the
third optional parameter is compile_id.

fetch

string fetch (string template [, string cache_id [, string compile_id [,
bool display]]])

This method returns the output of a template or displays the template. It has the same parameters as the
display method with one optional parameter more, the display Boolean parameter, which is false by
default. If it is set to true, the effect of this method will be the same as the display() method.

The display() method is built like this:
function display($resource_name, $cache_id = null, $compile_id = null)
 {
 $this->fetch($resource_name, $cache_id, $compile_id, true);
 }

Therefore, you should use the display() method when you want to display a template and the
fetch() method when you want to get the output of a template.

config_load

void config_load (string file [, string section])

This method loads the configuration file data and assigns it to the template. The first parameter is
the name of the configuration file and the second optional parameter is the section of the
configuration file we need to load.

get_registered_object

array get_registered_object (string object_name)

This method returns a reference to a registered object. The parameter is the registered object's name.

Download at Boykma.Com

Chapter 8

clear_config

void clear_config ([string var])

This method clears all assigned configuration variables if no parameter is provided. If the optional
var parameter is specified it will clear only that configuration variable.

Summary
In this chapter, we looked at Smarty from the programmer's point of view. We saw the many
built-in Smarty variables as well as methods that make the programmer's job easy. You can use the
methods and variables covered to perform various functions ranging from caching to debugging to
registering filters.

 161

Download at Boykma.Com

Download at Boykma.Com

9
Caching and Performance

Caching is a technique that is used very frequently by programmers to avoid calculating or
generating the same output repeatedly. Instead, function results or even output are recorded and
saved for later reuse. Usually caching is done by saving the appropriate information in special files
on disk, and then retrieving it later, but you could just as well cache things in memory.

A simple way to introduce caching to your PHP scripts is by using the static keyword for a
variable on functions, and using that variable to keep an in-memory copy of the function results,
such as in the following code snippet:

<?php
function getUserID($username)
{
 global $conn;
 static $returns;

 // check if we already have the result of
 // this function for the given username
 if (!empty($returns[$username])) {
 return $returns[$username];
 }

 $stmt = "SELECT
 user_id
 FROM
 user
 WHERE
 user_name='" . addslashes($username) . "'";
 $result = mysql_query($stmt, $conn);
 if ($result) {
 $user_id = mysql_result($result, 0, 0);
 // cache this result for later
 $returns[$username] = $user_id;
 return $user_id;
 }
}

// first call will trigger a DB query
$user_id = getUserID('andrei');
// second call will get its results from the cache
$user_id = getUserID('andrei');
?>

Download at Boykma.Com

Caching and Performance

 164

That is a nice example of an in-memory cache system (although extremely simple), but that's not how
Smarty caches templates. Smarty caches the templates files into other files, where the actual output is
saved and reused later if caching is enabled. Let's go over how to use this very handy feature.

Caching in Smarty
By default, a Smarty template has caching disabled (as of version 2.6.10), but you can always
enable it manually on your PHP scripts by setting the caching property to 1, as in:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;
$smarty->caching = 1;

$smarty->display('example2.tpl');
?>

This will speed things up by saving the output of a template file into a cache file, and using that
file in the future, instead of regenerating the output again from scratch. In some cases, the speed
gain as a result of this feature is dramatic. The lifetime of each cached file defaults to one hour
from its creation.

You need to be aware of what this means for your particular application, since this type of caching
may not be suitable for everything. That is, refreshing your cached files every hour might be too
long for your particular case, or maybe even too short. The lifetime can be tweaked on a
per-cached-file basis, by setting the caching property to 2, and then changing the cache_lifetime
property as you wish. Here's an example:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

// set the lifetime per cached file
$smarty->caching = 2;

// set the lifetime for 2 hours
$smarty->cache_lifetime = 7200;
$smarty->display('example3.tpl');

// set the lifetime for 1 day
$smarty->cache_lifetime = 24 * 60 * 60;
$smarty->display('daily_favorites.tpl');
?>

In the example above, we set the cache lifetime of the example3.tpl template file to two hours,
and set the lifetime to one day for the daily_favorites.tpl template. As you can guess from the
name, the template file doesn't need to be generated that frequently, since it is simply displaying
the previous day's favorite links. As mentioned before, the best way to improve the performance of
PHP scripts is to spend some time analyzing your application. See if tweaking the cache lifetime
for each particular template will make sense or not.

While these features are extremely useful in some situations, you might want to automatically
refresh the cache if a template file was updated. Smarty's compile_check property allows you to
do just that, since it forces the template engine to check whether any template or config files
associated with this cache have been updated, and if so, regenerates the cache. In order to enable
this feature, just set this property to TRUE, as in:

Download at Boykma.Com

Chapter 9

<?php
include_once('smarty.class.php');
$smarty = new smarty;
$smarty->caching = 1;
$smarty->compile_check = TRUE;

$smarty->display('example4.tpl');
?>

Of course, enabling this feature will affect performance, since Smarty will need to check all the
associated files for their modified dates.

Dynamically Caching Template Sections
Smarty's caching features are very interesting, but the options outlined above are still pretty
inflexible. Another interesting feature is the ability to check whether a given template is already
cached or not with the is_cached function. This is important because it allows the programmer to
only execute code when strictly necessary. For instance, you could decide whether to run an
expensive database query or not based on whether the given template is still available on Smarty's
cache. The following example illustrates this feature:

<?php
include_once('libs/smarty.class.php');
$smarty = new Smarty;
$smarty->caching = 1;

// only run this SQL query if necessary
if (!$smarty->is_cached('templates/example4.tpl')) {
 $stmt = "SELECT
 user_id,
 user_full_name
 FROM
 user
 WHERE
 user_name='" . addslashes($username) . "'";
 $result = mysql_query($stmt, $conn);
 if ($result) {
 $row = mysql_fetch_assoc($result);
 $smarty->assign('user_info', $row);
 }
}

$smarty->display('example4.tpl');
?>

As you can see, the is_cached() function expects a template filename as the first argument and
will return TRUE if the given template is found in the cache.

Clearing the Cache
You can clear out individual template files with the clear_cache() function and also the whole
cache with clear_all_cache. While usually you would wait for Smarty to automatically clear the
cached version of a template by making use of the lifetime feature, you can also manually trigger
this procedure. Here's an example of how you can clear the cache for a specific template file:

 165

Download at Boykma.Com

Caching and Performance

 166

<?php
include_once('libs/smarty.class.php');
$smarty = new smarty;
$smarty->caching = 1;

// remove the cache for this particular template
$smarty->clear_cache('templates/example6.tpl');

$smarty->display('example6.tpl');
?>

The following is an example of how to completely clear Smarty's cache:
<?php
include_once('libs/smarty.class.php');
$smarty = new smarty;
$smarty->caching = 1;

// fully clear the Smarty cache
$smarty->clear_all_cache();

$smarty->display('example7.tpl');
?>

One thing that is very important to remember is that Smarty will not automatically remove the cache
files that are older than their configured lifetime. That is, if you set a specific template to expire after
two hours, the file will continue to exist until some PHP script removes it, or the template needs to be
re-generated. Therefore, it's always a good idea to build a quick PHP script to remove cache files to
save disk space. You can do that with an optional argument to the clear_all_cache() function to
hold the number of seconds since the cache file was created, like so:

<?php
include_once('libs/smarty.class.php');
$smarty = new smarty;
$smarty->caching = 1;
$smarty->compile_check = true;

// expiration is 2 hours
$expiration_secs = 2 * 60 * 60;
$smarty->clear_all_cache($expiration_secs);
?>

Advanced Caching Features
While it may seem that the caching features outlined so far are very useful (and they are!), they
will quickly fall short for a semi-complex website. Take for example, a portal-like website with
sections like news, weblogs, and photos. You may want to cache the output of all specific news
items, and re-generate them in 5 days. On this specific case, the existing caching functionality will
not be enough, as the cache is associated with a template file, but this template file is re-used for
all news items.

The feature that is available and overcomes this apparent lack of functionality is the ability to
create multiple caches per template file. You do that by passing a second parameter to the display
method, which Smarty will use that to create a sub-directory under the cache directory to hold the
cache files. Take the following PHP script as an example:

Download at Boykma.Com

Chapter 9

<?php
include_once('libs/smarty.class.php');
$smarty = new Smarty;
$smarty->caching = 1;

// $_GET['id'] holds the integer 8143
$news_entry_id = (integer) $_GET['id'];
if (!$smarty->is_cached('news.tpl', $news_entry_id)) {
 $info = get_news_article_details($news_entry_id);
 $smarty->assign(array(
 'news_entry_id' => $info['news_id'],
 'news_entry_title' => $info['news_title']
));
}

$smarty->display('news.tpl', $news_entry_id);
?>

By default, Smarty will create all cache files in a directory named cache under the current working
directory. Running the example above will result in a file being created, with a filename similar to
news^8143^%%A9^A9B^A9B6E5C0%%news.tpl.

A problem with that scenario is that for complicated websites with lots of cached content, all of
the cached files will be located at the same directory, which will slow down access on most
operating systems.

Using Cache Groups
It's a good thing that the Smarty developers have already thought about this problem, and provided
yet another feature to customize how the cache files are stored. Consider the following modified script:

<?php
include_once('libs/smarty.class.php');
$smarty = new smarty;
$smarty->caching = 1;
$smarty->use_sub_dirs = TRUE;

// $_GET['id'] holds the integer 8143
$news_entry_id = (integer) $_GET['id'];
if (!$smarty->is_cached('news.tpl', 'news|'.$news_entry_id)) {
 $info = get_news_article_details($news_entry_id);
 $smarty->assign(array(
 'news_entry_id' => $info['news_id'],
 'news_entry_title' => $info['news_title']
));
}

$smarty->display('news.tpl', 'news|'.$news_entry_id);
?>

By setting the use_sub_dirs property to TRUE, and using a special format while creating the cache
ID, we cause Smarty to create the following directory structure to store the cache file:

cache\news\8143\%%A9\A9B\A9B6E5C0%%news.tpl

As you can see, Smarty created a sub-directory called news inside the cache directory, and yet
another sub-directory called 8143 under it. The other sub-directories, and the file-name format are
internal details for Smarty, but the important thing here is that by grouping cache IDs with the
pipe character, you can control how cache files are stored and removed.

 167

Download at Boykma.Com

Caching and Performance

 168

Clearing a Cache Group
This may seem simple, but think about a medium size website with hundreds or even thousands of
different news pieces. If all of the cached files were stored on a single directory, code that needs to
touch these files would be significantly slower than desired. If there are thousands of different
news pieces, you could remove them all at once with a simple PHP script, like so:

<?php
include_once('smarty.class.php');
$smarty = new smarty;
$smarty->template_dir = 'templates/';
$smarty->caching = 1;
$smarty->use_sub_dirs = TRUE;

$smarty->clear_cache(null, 'news');
?>

The clear_cache function goes to the cache directory, and simply removes the whole news
sub-directory tree: all sub-directories and files contained within it. The good thing here is that you
don't have to remove your complete cache if you simply want to change something on the news
section of your website.

Similar to how you can conditionally clear cache files by passing the number of seconds since the
cache file was created, you may do the same thing with a cache group. The following is an
example that will remove all cache files within the news group that are older than an hour:

<?php
include_once('smarty.class.php');
$smarty = new smarty;
$smarty->template_dir = 'templates/';
$smarty->caching = 1;
$smarty->use_sub_dirs = TRUE;

// expiration is 1 hour
$expiration_secs = 1 * 60 * 60;
$smarty->clear_cache(null, 'news', null, $expiration_secs);
?>

The third argument needs to be set to null, and Smarty will take care of the rest. The example
above is a great candidate of a potential PHP script to be run from a crontab, so that the cache files
get removed every hour or so.

Avoiding the Cache
There might be some specific cases in which you don't want Smarty to cache the template output,
or even small portions of a particular template. In these cases, you have several options to avoid
the cache:

• Force a specific template not to be cached.
• Always use {insert} when you need dynamic content, since it doesn't use the

caching system.
• Create a custom plug-in to force Smarty not to cache certain portions of a template.

We will go over these three different methods next.

Download at Boykma.Com

Chapter 9

Disabling a Template Cache
As already discussed, you can disable Smarty's cache feature on a template level by simply setting
the caching property to 0 (zero):

<?php
include_once('smarty.class.php');
$smarty = new smarty;
$smarty->caching = 0;

$smarty->display('example4.tpl');
?>

Using {insert} to Avoid Caching
You could also bypass Smarty's cache system by using the {insert} function, and implementing a
custom PHP function to return the appropriate results. For instance, you might want to have a
highly dynamic portion of your site to display the current time at each user location. The caching
feature will be a problem in this specific case, so let's consider the following PHP script:

<?php
include_once('smarty.class.php');
$smarty = new smarty;
$smarty->template_dir = 'templates/';
$smarty->caching = 1;
$smarty->use_sub_dirs = TRUE;

if (!$smarty->is_cached('example12.tpl')) {
 $smarty->assign('name', 'Joao Prado Maia');
}

$smarty->display('example12.tpl');
?>

As you can see, we are conditionally setting the name template variable depending on whether the
template is already cached or not. Let's see how the actual template is laid out:

<html>
<head>
 <title>Untitled</title>
</head>
<body>
<p>Hello {$name}</p>
{insert name="get_local_time" city="houston"}
</body>
</html>

We will require a new file in Smarty's plug-in directory called insert.get_local_time.php.
Here's the source code for this file:

<?php
// let's re-use PEAR's Date package for this function
require_once('Date.php');

function smarty_insert_get_local_time($params, &$smarty)
{
 if ($params['city'] == 'houston') {
 $date = new Date();
 // convert to the CST timezone
 $date->convertTZByID('America/Chicago');
 // getDate() returns the date formatted on the following format:
 // i.e. 2005-12-21 12:34:32
 $local_time = $date->getDate();
 }

 169

Download at Boykma.Com

Caching and Performance

 // ... continue with other cities

 return $local_time;
}
?>

By opening this PHP script on your web browser, you should see something similar to the following:

Now try going back to the front-end PHP script, and changing the name template variable to
something else, then reloading your web browser. You will realize that the name is not changing
on the page, but the local time is.

Creating a Custom Plug-in to Avoid Caching on Portions of a Template
The last method of avoiding the cache system is pretty straightforward. All we need to do is to
create a custom block plug-in, and register it with Smarty as a non-cacheable one. This way when
Smarty needs to process a particular portion of a template enclosed by our plug-in, the content will
always be dynamic.

This is also convenient because it gives a lot of control to the template programmer, while
avoiding the need for a custom {insert} function each time you need some truly dynamic
content. Let's analyze an implementation of this method:

<?php
include_once('libs/smarty.class.php');
$smarty = new smarty();
$smarty->caching = 1;
$smarty->use_sub_dirs = TRUE;
function get_content($params, $content, &$smarty)
{
return $content;
}
$smarty->register_block('no_caching', 'get_content', false);
if (!$smarty->is_cached('example13.tpl')) {
 $smarty->assign('name', 'Joao Prado Maia');
}
// we want to always display the most up to date download stats
$smarty->assign('download_stats', 1200);
$smarty->display('example13.tpl');
?>

What the custom plug-in is doing is very simple—it's being registered as a non-cacheable Smarty
plug-in, and returning the content found within the {no_caching} tags.

 170

Download at Boykma.Com

Chapter 9

This is what the output of this template looks like within a web browser:

In order to test this feature, try changing both the name and download_stats variables to
something else, and see which one actually gets changed when looking from your web browser.
You will see that the name variable keeps the old value, and download_stats is truly dynamic.

Creating a Custom Cache Handler
While Smarty's caching system works extremely well for small to medium-sized websites, it will
eventually pose a problem for bigger portals. Consider the scenario of a semi-complex website
that is handled by several servers. Let's assume this portal is managed over multiple web servers to
balance the load in a simple round-robin fashion across several machines, and there is a central
database server that is used to store the website's content.

Now continue with this scenario and imagine these web servers, each keeping a different cache
copy of a particular template. What would happen if a particular section of the site was changed,
and the cached copy on the first web server was updated, but the one on the second server wasn't?
There is a wide range of potential problems that could happen here, and an advanced feature is
needed to fill this gap.

Smarty's answer to this problem is the ability to provide a custom cache handler function to
manage the caching system content. The easiest answer to the problem scenario described above
would be to write a custom cache handler, and save the cache content on the central database
server. That way, all of the different web servers will transparently connect to the database to get
content, and if something changes on a cached template, all web servers are updated at once.

In order to create this custom cache handler backed by a database we will need to:

• Create a separate database to host this cached content (optional).
• Create a table to hold this content.
• Build a PHP function to handle the caching and store the content on the database.
• Point Smarty to this PHP function so it knows that it needs to call it to write or read

cached content.

 171

Download at Boykma.Com

Caching and Performance

 172

Let's go over each of those steps now, starting with the database setup. The first thing needed here
is to connect to the MySQL database server and create a new database, which we will call cache:
$ mysql –u root –p
Enter password: ******
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 12 to server version: 4.1.14-max-debug

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CREATE DATABASE cache;
Query OK, 1 row affected (0.00 sec)

mysql> USE cache;
Database changed

mysql> CREATE TABLE smarty_cache (
 -> id INT(11) UNSIGNED NOT NULL AUTO_INCREMENT,
 -> template_file VARCHAR(32) NOT NULL,
 -> cache_id VARCHAR(32) DEFAULT NULL,
 -> compile_id VARCHAR(32) DEFAULT NULL,
 -> contents MEDIUMTEXT NOT NULL,
 -> PRIMARY KEY (id)
 ->);
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT SELECT, UPDATE, INSERT, DELETE ON cache.* TO 'cache_user'@'localhost'
IDENTIFIED BY '4Ef6Th23qw';
Query OK, 0 rows affected (0.00 sec)

The first command creates the new database called cache that we will use, the second one changes
the currently selected database to this newly created one, and then we create the smarty_cache
table. The last command grants the appropriate permissions to a new MySQL user called
cache_user. This new user requires the permission to run UPDATE, DELETE, INSERT and T SELECT
statements against this database.

Now that the database is all set up for us, let's start building the actual custom cache handler
function. The following are the required function arguments for any cache handler in Smarty:

Argument Description

$action The action that Smarty is trying to perform on the cache. Possible values are: write,
read, or clear. That is, write to the cache, read from the cache, or clear the contents of
the cache for a particular template.

&$smarty The Smarty object that is currently processing this template. This might be useful for
caching systems that need to have access to some internal-only detail of the template
file, or from Smarty itself. This is always passed as a reference, so it is also available
to be modified from the cache handler.

&$cache_contents The variable that will hold the contents to be put in the cache, or to be written to in the
case of a read action, or even a dummy value in the case of a clear action. This
variable is passed as a reference, and should be set to whatever is available on the
cache in the case of a read action.

$template_file The filename of the template file that this cache should relate to.

$cache_id (Optional.) The cache group with which to associate this cache.

Download at Boykma.Com

Chapter 9

Argument Description

$compile_id (Optional.) The compile ID with which to associate this cache.

$expiration_time (Optional.) The expiration time for this particular cache item. This is strictly optional
since Smarty already checks the expiration time prior to calling the cache system, but
it could be used for some extra processing by the cache handler itself.

We will call this cache handler function db_cache_handler, and store the function in the file
db_cache_handler.php and re-use it in the actual PHP scripts. Here's the start of this file:

<?php
require_once('DB.php');
// connect to the database server
$dsn = array(
 'phptype' => 'mysql',
 'hostspec' => 'localhost',
 'username' => 'cache_user',
 'password' => '4Ef6Th23qw',
 'database' => 'cache'
);
$dbh = DB::connect($dsn);

The above will include the PEAR::DB package, which is usually installed by default on most
modern PHP installations, assign the proper values to the connection DSN variable, and then
connect to the database server. Next we will define the actual PHP function:

function db_cache_handler($action, &$smarty, &$cache_contents,
 $template_file = null, $cache_id = null,
 $compile_id = null, $expiration_time = null)
{
 global $dbh;

That defines a new function called db_cache_handler, and uses the argument list described
before. We also define a $dbh global variable to be able to access the database connection handle
and use it from within the PHP function.

 // build the where clause
 $where_params = array();
 if (!empty($template_file)) {
 $where_params[] = "template_file='" . addslashes($template_file) . "'";
 }
 if (!empty($cache_id)) {
 $where_params[] = "cache_id='" . addslashes($cache_id) . "'";
 }
 if (!empty($compile_id)) {
 $where_params[] = "compile_id='" . addslashes($compile_id) . "'";
 }
 $where_clause = implode(' AND ', $where_params);

The above will dynamically build an array with the function arguments, to eventually re-use in the
SQL queries themselves. Now we go over each possible action type:

 // possible values for $action are: read, write or clear
 if ($action == 'read') {
 $stmt = "SELECT
 contents
 FROM
 smarty_cache
 WHERE " . $where_clause;
 $cache_contents = $dbh->getOne($stmt);

 173

Download at Boykma.Com

Caching and Performance

 174

As you can see, the read action will trigger a SELECT query against the database to get the actual
cache content, and it will assign it to the

T

$cache_contents variable, which is passed by reference
to this function. This will allow the PHP code that calls this function to access the contents at will.

 } elseif ($action == 'write') {
 // check if this is already cached
 $stmt = "SELECT
 id
 FROM
 smarty_cache
 WHERE " . $where_clause;
 $id = $dbh->getOne($stmt);
 if (empty($id)) {
 $stmt = "INSERT INTO
 smarty_cache
 (
 template_file,
 cache_id,
 compile_id,
 contents
) VALUES (
 '" . addslashes($template_file) . "',
 '" . addslashes($cache_id) . "',
 '" . addslashes($compile_id) . "',
 '" . addslashes($cache_contents) . "'
)";
 } else {
 $stmt = "UPDATE
 smarty_cache
 SET
 template_file='" . addslashes($template_file) . "',
 cache_id='" . addslashes($cache_id) . "',
 compile_id='" . addslashes($compile_id) . "',
 contents='" . addslashes($cache_contents) . "'
 WHERE
 id=$id";
 }
 $dbh->query($stmt);

The code above is simply checking if the given template is already in the cache, and if it is, it will
run an UPDATE query against it. Otherwise, it will insert the new template. The rest of the script will
handle the last clear action, which is used to delete a particular cache entry from the database:

 } elseif ($action == 'clear') {
 $stmt = "DELETE FROM
 smarty_cache
 WHERE " . $where_clause;
 $dbh->query($stmt);
 }
}
?>

You should concatenate the previous PHP snippets together into the db_cache_handler.php file,
and save it. Next we will finish the cache handler example with the actual PHP script:

<?php
include_once('libs/smarty.class.php');
include_once('db_cache_handler.php');
$smarty = new Smarty;
$smarty->caching = 1;
$smarty->compile_check = false;
$smarty->cache_handler_func = 'db_cache_handler';

Download at Boykma.Com

Chapter 9

if (!$smarty->is_cached('cache_handler.tpl')) {
 $smarty->assign('name', 'Joao Prado Maia');
}

$smarty->display('cache_handler.tpl');
?>

The cache_handler_func Smarty property is what tells the template engine to use our custom
PHP script as the source for all things related to the cache system. Smarty will call that function
when it needs to check if a template is already cached, like the is_cached check above, or when
trying to save a new version of a cached template, and so on. Here's the source code for the
accompanying cache_handler.tpl template file:

<html>
<head>
 <title>Custom Cache Handler Example</title>
</head>

<body>

<p>Hello {$name}</p>

</body>
</html>

While the template is extremely simple—it only tries to print the given $name variable—it will be
a perfect example for us to test our custom cache handler. Try loading the PHP script on your
browser, and you see this simple web page:

Nothing fancy about that. Let's go a little deeper and actually see what is being stored on the
database itself:
$ mysql –u root –p cache
Enter password: ******
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 26 to server version: 4.1.14-max-debug

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT * FROM smarty_cache\G
*************************** 1. row ***************************
 id: 1

 175

Download at Boykma.Com

Caching and Performance

 176

template_file: cache_handler.tpl
 cache_id:
 compile_id:
 contents: 139
a:4:{s:8:"template";a:1:{s:17:"cache_handler.tpl";b:1;}s:9:"timestamp";i:1125464
354;s:7:"expires";i:1125467954;s:13:"cache_serials";a:0:{}}<html>
<head>
 <title>Custom Cache Handler Example</title>
</head>

<body>

<p>Hello Joao Prado Maia</p>

</body>
</html>
1 row in set (0.27 sec)

As you can see, the actual cache contents have a specific format to them, which is used by Smarty
to find extra information about each particular cache entry. The real format doesn't really matter,
as Smarty will give you the value already pre-formatted for you.

Optimizing Smarty Applications
While caching in most cases will provide a big boost of performance, it isn't the only way to
performance-tune your PHP / Smarty applications. Usually web applications will need to be
analyzed carefully to find performance-related problems. Sometimes they might be related to your
database server, if you use one, or even depend on an algorithm that you decided to use for a
particular task. Doing a complete analysis of your application might need the help of other people,
who are new to your code and can look at it with a fresh perspective.

Here are some simple guidelines that might help you get a performance-centric view of developing
with PHP and Smarty:

• Implement periodic performance tests on your code.
• Document the results of your performance tests.
• Use profiler tools such as Xdebug and CacheGrind.
• Consider a PHP optimizer solution, such as ionCube's PHP Accelerator or

Zend Optimizer.
• Enable the caching feature in Smarty.
• Implement caching routines on your back-end PHP code.
• Precompute function results when appropriate.
• Stay current with PHP releases, as new versions frequently include performance

enhancements.

From all of the above items, the first two ones are the most important. Without periodic tests, and
a plan to always document the results, there is no way to tell which part of the code is performing
poorly. At the same time, when testing improvements to the code, try to make changes in only one
area of the code, and then perform the tests again. Large changes to the code will sometimes affect
the testing results in different ways.

Download at Boykma.Com

Chapter 9

Profiling PHP
One of PHP's historical problems is the lack of good tools aimed at profiling and debugging.
Since the language was created, most programmers have been taught to simply add profiling
lines through the PHP code to be able to see in which part the script is actually taking the most
time in. The following script would be a good example of the old way of doing things:

<?php
include_once('Benchmark/Timer.php');
$bench = new Benchmark_Timer;
$bench->start();

include_once('smarty.class.php');
$smarty = new smarty;
$smarty->caching = 0;
$bench->setMarker(__LINE__);

// fully clear the Smarty cache
$smarty->assign('name', 'Joao Prado Maia');

$smarty->display('cache_handler.tpl');

$bench->stop();
var_dump($bench->getProfiling());
?>

The script is reusing an existing benchmarking utility from PEAR called Benchmark_Timer, and
will display an array that contains the benchmarking information, which is built by repeatedly
calling the benchmark code that computes the current timestamp and the difference to the previous
call, hence calculating the difference in time from one part of the code to the next. Here's what this
script would output on your browser:

 177

Download at Boykma.Com

Caching and Performance

 178

The information displayed on the screenshot above is pretty useful, but profiling PHP scripts this
way is extremely error prone and laborious, since you need to take the time to add the benchmark
class to your application, and sprinkle your code with calls to the appropriate function.

Fortunately, there's a better way to profile PHP scripts with some fairly recent open-source tools.
We will go over some of them next.

Designing Sites for Effective Caching
One of the most important things while designing a new website or application is to think of how
the user will eventually access your information. One of the corner stones of the Web is the use of
proxy servers that cache things for the end user, usually done by Internet Service Providers (ISP)
to improve the user experience of the Web. Web browsers also cache things locally to improve the
speed of frequently accessed websites.

This is done by using four different HTTP headers that will command how the proxy servers and
web browsers cache content:

• Last-Modified
• ETag
• Expires
• Cache-Control

We will go over these headers next, and how to manipulate them to improve the caching of your
website or application.

The Last-Modified and ETag Headers
Most web servers nowadays return valid content automatically for these two headers, which are
used by user agents (web browsers and proxy servers) to check whether a given URL should be
cached or not. The following would be a good example of a HTTP response that includes these
two headers:

HTTP/1.1 200 OK
Date: Thu, 29 Sep 2005 18:54:26 GMT
Server: Apache/1.3.33 (Unix)
Cache-Control: max-age=3600, must-revalidate
Expires: Sat, 29 Oct 2005 18:54:26 GMT
Last-Modified: Thu, 29 Sep 2005 18:54:26 GMT
ETag: "6e93-130-3852bdde"
Content-Length: 3489
Content-Type: text/html

The Last-Modified header is used to tell the user agent when this content was generated and it
will be re-used later when the user agent needs to check whether the server has a fresher version of
the content than the one it has cached locally. This check is done by yet another HTTP header,
called If-Modified-Since, which will be passed to the server, and will help decide whether the
local cache should be used or not. Here's a simple example:

GET /cnn/images/1.gif HTTP/1.1
Host: i.cnn.net
Accept: image/png,*/*;q=0.5

Download at Boykma.Com

Chapter 9

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
If-Modified-Since: Tue, 27 May 2003 19:00:10 GMT
Cache-Control: max-age=0

As you can see above, the 1.gif image was probably previously returned with a Last-Modified
value of Tue, 27 May 2003 19:00:10 GMT, and that value is being sent back to the server to see
whether the web browser should use the local cached copy of this image, or if it should request a
new copy. Here's the response from the server:

T

HTTP/1.x 304 Not Modified
Date: Sat, 03 Sep 2005 04:15:42 GMT
Content-Type: image/gif
Last-Modified: Tue, 27 May 2003 19:00:10 GMT
Age: 987
Connection: keep-alive

The 304 response code is what tells the web browser to simply re-use the local cached copy.

The ETag header is used in a similar way to the Last-Modified one, but this time a unique
identifier created by the server that relates to that specific version of the content. Here's an
example HTTP request:

GET /cnn/.element/img/1.3/searchbar/bg.gif HTTP/1.1
Host: i.a.cnn.net
Accept: image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
If-Modified-Since: Wed, 09 Mar 2005 17:32:07 GMT
If-None-Match: "d0b3114c-1b1-9b-0"
Cache-Control: max-age=0

The If-None-Match header value above is what is passed by the user agent to the server, to check
whether the local cached copy of this image is still valid or not. If it is, the web server will return a
304 response code as it did for the If-Modified-Since example we described before:

HTTP/1.x 304 Not Modified
Content-Type: image/gif
Last-Modified: Wed, 09 Mar 2005 17:32:07 GMT
Etag: "d0b3114c-182-9b-0"
Date: Sat, 03 Sep 2005 04:44:30 GMT
Connection: close

As you can see, the server will return the 304 response code, and the same ETag value, to
demonstrate to the user agent that its local copy is still valid and it should be used.

The Expires Header
This header allows you to set an expiration date for a particular piece of content on your website or
application. It is most useful for static content, such as images for buttons and logos. Since these
things don't tend to change very often, you can set a very long expiration date on them, and it will
improve the performance of your pages since some of their content will be delivered through caches.

The allowed value for this header is an HTTP date set to Greenwich Mean Time (GMT). That
alone brings a potential problem, since depending on how synchronized the clocks on your web
server and the cache user agent are, you might get stale content that is deemed fresh. Here's an
example of the use of the Expires header:

 179

Download at Boykma.Com

Caching and Performance

 180

HTTP/1.x 200 OK
Date: Sat, 03 Sep 2005 05:06:24 GMT
Server: Apache
Content-Type: text/html
Last-Modified: Sat, 03 Sep 2005 05:06:17 GMT
Cache-Control: max-age=60, private
Expires: Sat, 03 Dec 2005 05:06:24 GMT
Content-Encoding: gzip
Content-Length: 13606
Connection: close

As you can see above, the Expires header is being set to 3 months in the future, which is just fine
in this specific case since it is the response for a navigation bar image that doesn't get changed
very often, if at all.

The Cache-Control Header
This header was introduced with HTTP 1.1 to provide more control to proxy servers and overall
cache maintenance. There are several values that can be used for this response header:

Header Value Description

max-age=[seconds] Amount of time for which the cached content will be deemed valid.

s-maxage=[seconds] Same as above header value, but only appropriate to proxy caches.

public Flags authenticated responses as cacheable.

no-cache Instructs caches to submit the request to the web server before releasing any
content. Useful in combination with authenticated requests.

no-store Prevents caches from storing any content.

must-revalidate Forces caches to obey your expiration rules.

proxy-revalidate Similar to must-revalidate, but specific to proxy caches.

Here's an example of how to mark a specific URL as being cacheable, but still force caches to
check with the web server before releasing any content:

Cache-Control: public, no-cache, must-revalidate

Tools: ApacheBench (ab)
ApacheBench is a simple benchmarking tool that comes bundled with most Apache HTTP Server
distributions, so if you already have this web server installed, it's safe to say that you also have
ApacheBench. The command that you should look for is called ab.

We will not go over many details about it, but here's a simple example of how to use this tool to
benchmark a specific web page:
$ ab –n 100 –c 10 http://pessoal.org/blog/index.php

If you need to provide authentication credentials to connect to this web page, you may pass them
along with ab:
$ ab –n 100 –c 10 –A username:password http://pessoal.org/blog/index.php

Download at Boykma.Com

Chapter 9

There are several different options that you can use with this tool, so run it with the –h argument to
see an overview of them. Here's a sample output (given that you provide the proper URL to it):
This is ApacheBench, Version 2.0.41-dev <$Revision: 1.121.2.12 $> apache-2.0
Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Copyright (c) 1998-2002 The Apache Software Foundation, http://www.apache.org/

Benchmarking pessoal.org (be patient).....done

Server Software: Apache/2.0.46
Server Hostname: pessoal.org
Server Port: 80

Document Path: /blog/index.php
Document Length: 19194 bytes

Concurrency Level: 10
Time taken for tests: 8.263694 seconds
Complete requests: 100
Failed requests: 0
Write errors: 0
Total transferred: 1947100 bytes
HTML transferred: 1919400 bytes
Requests per second: 12.10 [#/sec] (mean)
Time per request: 826.369 [ms] (mean)
Time per request: 82.637 [ms] (mean, across all concurrent requests)
Transfer rate: 230.04 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 51 56 9.3 52 87
Processing: 359 752 259.8 711 1526
Waiting: 173 474 214.0 443 1195
Total: 419 808 258.6 767 1577

Percentage of the requests served within a certain time (ms)
 50% 767
 66% 833
 75% 905
 80% 1037
 90% 1198
 95% 1328
 98% 1535
 99% 1577
 100% 1577 (longest request)

From the output above, we can gather that the web page averaged 12 requests per second, with an
average of 82.63 milliseconds taken per request.

Tools: Xdebug
Xdebug is a Zend extension that provides a lot of useful debugging and profiling information to
PHP developers. This tool is maintained by Derick Rethans, who is a core PHP developer and an
active member of the community. We will cover the 2.0 branch of this tool, as it provides some
very interesting features, one of them being the integration with CacheGrind, which allows PHP
developers to analyze profile information with a graphical tool.

 181

Download at Boykma.Com

Caching and Performance

Xdebug can be downloaded from its website at http://www.xdebug.org. Look for the download
link that is associated with the 2.0 branch, usually a URL that begins with xdebug200.

We will go over the installation instructions for Windows users, assuming an Apache installation
with PHP set up as a module. The process is pretty simple, as the download link will provide you
with a ready-to-use DLL file. The file for our instructions will be called
xdebug-5.0-2.0.0beta1.dll. Here is the step-by-step process:

1. Copy the DLL file to the PHP extensions directory, which is usually c:\php\ext.
2. Open your php.ini file (stored on c:\windows).
3. Add the following lines to the beginning of the file (right after the [PHP] line):

zend_extension_ts="c:/php/ext/xdebug-5.0-2.0.0beta1.dll"
xdebug.profiler_enable=1
xdebug.profiler_output_dir="c:/tmp/xdebug/"

4. Restart Apache.
5. Load a web page from a domain hosted on this web server.

The first of the three lines that you added to php.ini will tell PHP to load the Xdebug extension
while processing PHP scripts and the other two lines are needed by Xdebug to enable the features
that will generate dump files to be used when analyzing the profile information of your page.

Please make sure to provide the proper permissions on the c:\tmp\xdebug directory so that the
Apache server is allowed to create files within it.

Now take a look at the c:\tmp\xdebug directory. It should look somewhat like the following figure:

The files created within this directory will always conform to this cachegrind.out.<numbers>
naming convention, and should be opened with WinCacheGrind, which we will describe next.

 182

Download at Boykma.Com

http://www.xdebug.org/

Chapter 9

Tools: WinCacheGrind
WinCacheGrind is a graphical tool used to analyze the cachegrind.out files generated by
Xdebug. This is an open-source project and you can download the latest release from its website at
http://sourceforge.net/projects/wincachegrind.

Installation should be simple—just download the installer package and follow the step-by-step
instructions. The tool should configure itself and work out of the box with the default options.
After installing it, run the graphical tool itself.

From the main menu of WinCacheGrind, choose File, then Open. Browse through to c:\tmp\
xdebug and open one of the cachegrind.out files. Your WinCacheGrind screen should look
like the following:

One of the most useful features is the ability to analyze the script execution as a whole, and see
which function is using the largest portion of the time, and then drill down on that particular function
and analyze its information. For relatively complex websites or applications, this can be crucial to
tune the performance of some parts of your code that you don't expect are performance bottlenecks.

 183

Download at Boykma.Com

http://sourceforge.net/projects/wincachegrind

Caching and Performance

 184

Summary
Performance is always a complex topic to discuss, and PHP is known for the lack of support from
third-party tools in this respect. Hopefully, the growth of PHP's popularity will result in more
work done to improve some of these tools.

Remember that performance tuning, and caching being one instrument towards that goal, should
be considered on a case-by-case basis. Sometimes improving the performance of a piece of code
will actually decrease the level of maintainability of the code, making it harder to understand and
change in the future.

You should also understand and follow the guidelines to optimize Smarty applications.
Specifically, the steps that describe the periodic performance tests and the documentation of the
results of those tests are very important. Without an actual document describing the changes and
the results, you will never be able to improve your code in the long term. Teams usually forget the
changes previously done to an application, so always remember to document them.

Download at Boykma.Com

10
Extending Smarty with Plug-ins

While Smarty was made to contain functions relevant to most common web development needs,
there are times when you need to extend it. There are also some cases in which developing a
Smarty plug-in is a good idea, because it might save you time or it might make sense to centralize
a particular type of functionality into a single function call.

In this chapter, we will go over the process of finding, installing, and using plug-ins in templates,
and also give an overview of how to implement your own custom functionality.

Smarty defines a plug-in as any type of custom functionality implemented by third-party
developers. Smarty is already distributed with a wide variety of functions, and while some of them
are needed by Smarty itself (called built-in functions), others can be changed to define some extra
functionality (called custom functions). Plug-ins, however, are usually associated with totally
different functionality not available by default in Smarty.

Finding and Installing Plug-ins
The best place to find plug-ins is by checking the resources listed on the Smarty website. At the
time of writing this book, the biggest and most up-to-date collection of plug-ins can be found on
the Smarty Wiki, available on http://smarty.incutio.com/?page=smartyPlug-ins. There's
also a list of available plug-ins on the Smarty website, http://smarty.php.net/resources.php.

Installation of plug-ins should be as simple as moving the plug-in file into the appropriate
location, usually the plug-ins directory under the Smarty installation path. For instance, if you
installed Smarty under /usr/local/share/Smarty, you would need to copy your plug-in files
to the /usr/local/share/Smarty/plug-ins directory. However, always refer to your plug-in
documentation for the specific installation instructions.

Be aware of the naming convention for plug-ins—depending on the type of the plug-in, different
filenames should be used. For example, for a modifier plug-in called remove_whitespace, you
would need to create a file named modifier.remove_whitespace.php in your plug-ins directory.

Download at Boykma.Com

http://smarty.incutio.com/?page=SmartyPlugins
http://smarty.php.net/resources.php

Extending Smarty with Plug-ins

 186

Useful Plug-ins
In this section, we take a look at some handy plug-ins for Smarty.

HTML List Plug-in
While Smarty already provides a ton of useful functions to quickly generate HTML given a PHP
array, it doesn't provide for a quick way to output lists (or). The HTML List plug-in is
the answer to this deficiency, and it is available at http://smarty.incutio.com/
?page=HTMLListPlugin. You need to copy the PHP code available on the URL and save it as
function.html_list.php under the plugins directory.

In order to visually see the difference between using html_list and simply looping through a
PHP array, here are two versions of a template that will generate the same output.

A PHP script, named example_html_list.php, to call out our template:
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

$departments = array(
 'Marketing Department',
 'Sales Department',
 'Customer Service Department'
);
$smarty->assign('departments', $departments);

$smarty->display('example_html_list.tpl');
?>

Looping through a PHP array with {section} in our example_html_list.tpl template file:
<html>
<head>
<title>Example Corp.</title>
</head>
<body>

Available departments:

{section name="i" loop=$departments}
 {$departments[i]}
{/section}

</body>
</html>

Using html_list instead:
<html>
<head>
<title>Example Corp.</title>
</head>
<body>

Available departments:
{html_list values=$departments}

</body>
</html>

Download at Boykma.Com

http://smarty.incutio.com/?page=HTMLListPlugin
http://smarty.incutio.com/?page=HTMLListPlugin

Chapter 10

And running this PHP script on your browser would result on the following output:

As you can see above, both ways of creating your template produce the same output, but the
second form is much simpler to write and read, and because of that, it is easier to maintain.

File Size Format Plug-in
Web developers often need to quickly format a file size in bytes into a more human-readable
format. While you could format the file size directly in PHP, and then pass that value to Smarty,
you might want to use the original file size in bytes for something else. It's also a good idea to
keep the business logic routines in PHP as simple as possible, and add layout logic to your Smarty
templates later on.

This plug-in is available from http://smarty.incutio.com/?page=FSizeFormatPlugin. Check
back often for updates to this plug-in.

The following is the source of . Copy and save it as fsize_format modifier.fsize_format.php
in your plug-ins directory:

<?php
/*
* Smarty plugin
* ---
* Type: modifier
* Name: fsize_format
* Version: 0.2
* Date: 2003-05-15
* Author: Joscha Feth, joscha@feth.com
* Purpose: formats a filesize (in bytes) to human-readable format
* Usage: In the template, use
 {$filesize|fsize_format} => 123.45 B|KB|MB|GB|TB
 or
 {$filesize|fsize_format:"MB"} => 123.45 MB
 or

 187

Download at Boykma.Com

http://smarty.incutio.com/?page=FSizeFormatPlugin

Extending Smarty with Plug-ins

 188

 {$filesize|fsize_format:"TB":4} => 0.0012 TB
* Params:
 int size the filesize in bytes
 string format the format, the output shall be: B, KB, MB,
GB or TB
 int precision the rounding precision
 string dec_point the decimal separator
 string thousands_sep the thousands separator
* Install: Drop into the plugin directory
* Version:
* 2003-05-15 Version 0.2 - added dec_point and thousands_sep thanks to
Thomas Brandl, tbrandl@barff.de
* - made format always uppercase
* - count sizes "on-the-fly"
* 2003-02-21 Version 0.1 - initial release
* ---
*/
function smarty_modifier_fsize_format($size,$format = '',$precision = 2,
$dec_point = ".", $thousands_sep = ",")
{
 $format = strtoupper($format);

 static $sizes = array();

 if (!count($sizes)) {
 $b = 1024;
 $sizes["B"] = 1;
 $sizes["KB"] = $sizes["B"] * $b;
 $sizes["MB"] = $sizes["KB"] * $b;
 $sizes["GB"] = $sizes["MB"] * $b;
 $sizes["TB"] = $sizes["GB"] * $b;
 $sizes = array_reverse($sizes, true);
 }

 // get "human" filesize
 foreach ($sizes as $unit => $bytes) {
 if (($size > $bytes) || ($unit == $format)) {
 // return formatted size
 return number_format($size / $bytes, $precision, $dec_point,
$thousands_sep) . " " . $unit;
 }
 }
}
?>

The code creates a PHP array with the definitions of each file size unit, such as a byte, kilobyte,
megabyte, and so on. Then it reverses the order of those units, so the biggest ones are first. To
finish it off, we loop through all of the available units, and see if the given file size is bigger than
the unit being iterated on. So if you pass 1025 bytes as the file size, the code will loop through the
units until it finds that 1025 is bigger than 1 kilobyte (1024 bytes). After finding the most
appropriate unit, the code then formats the file size based on that unit.

Here's an example of the use of this plug-in:

The new PHP script named example_fsize_format.php to call out our template:
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

// in real life you would do filesize('budget.pdf') here
$smarty->assign('filesize', 123456);

$smarty->display(example_fsize_format.tpl');
?>

Download at Boykma.Com

Chapter 10

And here is the example_fsize_format.tpl template file, with the call to the fsize_format
variable modifier:

<html>
<head>
<title>Example Corp.</title>
</head>
<body>

Download file:

 budget.pdf (size:
 {$filesize|fsize_format})

</body>
</html>

This is what the plug-in returns for the function call above: 120.56 KB.

As you can see from the documentation on this plug-in, you can even optionally force it to format
the file size to a specific file size unit. Otherwise, the most appropriate unit will be used
automatically by the plug-in.

Google Highlight Plug-in
A quite common problem in web development is to highlight the search keywords when
displaying the results of a search. Google does this very well when one requests a cached copy of
the web page that was returned by a search query, and this plug-in implements exactly this
functionality. Perhaps the colors could be tweaked a little bit, but overall this is a very useful plug-
in that can be relevant to your search engine results.

The following is the source code for our Google Highlight plug-in. Copy the source and paste into
a new file called modifier.google_highlight.php in your plug-ins directory:

<?php
/*
 * Smarty plug-in
 * ---
 * Type: modifier
 * Name: google_highlight
 * Version: 1.0
 * Date: April 18, 2005
 * Author: Jeroen de Jong <jeroen@telartis.nl>
 * Purpose: html safe case insensitive google highlight
 * Comments: based on work by Tom Anderson <toma@etree.org>
 *
 * Example smarty code:
 *
{assign var=text value="This is a string I want to search
through"}
{assign var=search value="this \"to search\" through"}
{$text|google_highlight:$search}
 *
 * ---
 */
function smarty_modifier_google_highlight($text, $search)

 189

Download at Boykma.Com

Extending Smarty with Plug-ins

 190

{
 $colors = array('#FFFF00','#00FFFF','#99FF99','#FF9999','#FF66FF',
 '#880000','#00AA00','#886800','#004699','#990099');

 $terms = array();
 preg_match_all('/(".+?"|\S+)/', $search, $m);
 foreach (array_unique($m[0]) as $s) {
 $terms[] = str_replace('"', '', $s);
 }

 $r = $text;
 for ($i = 0; $i < count($terms); $i++) {
 $blocks = preg_split('/(<.+?'.'>)/s', $r, -1,
 PREG_SPLIT_NO_EMPTY | PREG_SPLIT_DELIM_CAPTURE);
 $r = '';
 for ($j = 0; $j < count($blocks); $j++) {
 if (substr($blocks[$j], 0, 1) != '<') {
 $replace = '<b style="color:'.($i / 5 % 2 ? 'white':'black').
 ';background-color:'.$colors[$i % 10].'">\\1';
 $blocks[$j] = preg_replace('/('.preg_quote($terms[$i]).')/i',
 $replace, $blocks[$j]);
 }
 $r .= $blocks[$j];
 }
 }
 return $r;
}
?>

Now that the plug-in file is in place, let's create a simple example to use it.

Create a new PHP script called example_google_highlight.php and put the following content
into it:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

$results = array(
 'Management Team',
 'Customer Service',
 'Professional Services'
);
$search_keywords = 'professional service team';
$smarty->assign(array(
 'search_results' => $results,
 'keywords' => $search_keywords
));

$smarty->display(example_google_highlight.tpl');
?>

Now create the accompanying template file, called example_google_highlight.tpl, which uses
the google_highlight modifier:

<html>
<head>
<title>Example Corp.</title>
</head>
<body>

Search results:

{section name="i" loop=$search_results}
 {$search_results[i]|google_highlight:$keywords}
{sectionelse}

Download at Boykma.Com

Chapter 10

 No results could be found for '{$keywords}'.
 {/section}

 Displaying results 1 - {$search_results|@count}.

 </body>
 </html>

Open that PHP script in your web browser, and you should see the following:

Obviously this is a pretty simple example, but you can probably see how this could be extremely
useful when you need to help your users visually by displaying where the search keywords were
found in a document title or body.

We could also implement something similar to automatically highlight search keywords when
users are redirected by search engines with an output filter.

Writing your own Plug-ins
Before going off and writing your own plug-ins, please be aware of the naming convention that is
used by Smarty to load plug-ins on demand. Basically, Smarty will parse your template, and as
soon as it finds a particular function that it doesn't already support by default, it will load the
associated plug-in file. So if you tried to use the fsize_format modifier plug-in described above,
Smarty will try to load a file called modifier.fsize_format.php that should be located in
Smarty's plug-in directory.

So the naming convention is the following:
type.function_name.php

 191

Download at Boykma.Com

Extending Smarty with Plug-ins

 192

function_name should be replaced with whatever the name of your plug-in is, and type by the
type of your plug-in. The options for type are:

Type String to use in plug-in filename

Functions function

Modifiers modifier

Block functions block

Compiler functions compiler

Resources resource

Inserts insert

Prefilters prefilter

Postfilters postfilter

Output filters outputfilter

The last three options are covered in more detail in the next chapter, but we list them here for
completeness' sake.

Inside each plug-in file you should create a function with the following naming convention:

smarty_type_function_name()

So to drive the point home: If you have a function plug-in called auto_link_urls, then the
filename should be called function.auto_link_urls.php and the function name should be
smarty_function_auto_link_urls().

Plug-in Types
You can create several types of plug-ins, as listed above. Here are the main characteristics of each
plug-in type.

Functions
Function plug-ins are the most common plug-ins available. They allow programmers to develop
extra features that are executed when the function is called from within the templates. If any
output is produced while the function is being executed, it will be placed where the function was
within the template.

While the implementation for this type of plug-in varies widely with each type of need, some of
these are outstanding plug-ins for your use. One of them is called SmartyPaginate, and was
developed by the main author behind Smarty itself. It's a cross between a PHP class and a Smarty
plug-in used to handle data set pagination within HTML pages. This is very useful for web
developers and is available at http://www.phpinsider.com/php/code/SmartyPaginate/.

Download at Boykma.Com

Chapter 10

Modifiers
Modifier plug-ins take the value of the variable that they are being called against, and are allowed
to change it. One common usage of plug-ins is to modify strings to highlight search keywords.
Another very common usage is to treat values and escape embedded HTML or JavaScript input, to
avoid XSS (Cross-Site Scripting) vulnerabilities.

Block Functions
This type of plug-in allows you to perform a set of changes to a given block of text. You could
also use this type of plug-in to extend the built-in control structures of Smarty to allow for a new
{while} function, for instance. We will take a detailed look at block functions in Chapter 12,
where a block function is used to dynamically translate the content found within its tags.

RSSBlockAnother pretty interesting example is the plug-in, available at
http://smarty.incutio.com/?page=RSSBlock. This plug-in fetches an RSS feed and iterates
over its items. For instance, the following is what is needed to fetch the last three news items from
the PHP.net website:

{rss file="http://www.php.net/news.rss" length="3"}
 {$rss_item.title}

{/rss}

Compiler Functions
Compiler functions are executed only when Smarty is in the process of compiling the templates
into PHP scripts. This may be useful to programmatically add PHP code to the resulting compiled
template, but that's also possible with output filters.

Prefilters, Postfilters, and Output Filters
Filters are covered in detail in Chapter 11.

Resources
Resource plug-ins allow you to change the way Smarty looks for templates. For instance, consider
the following template source:

{include file="test.tpl"}

And this one:
{include file="file:test.tpl"}

The above templates do exactly the same thing: open the file test.tpl from the disk and include
the output on the given template. However, you can customize how this works by assigning
different resources for templates. You could create a special db resource that would make Smarty
call a special plug-in to get the content of a given template, like:

{include file="db:test.tpl"}

However, this type of feature won't be needed for most web applications.

 193

Download at Boykma.Com

Extending Smarty with Plug-ins

 194

Inserts
Insert plug-ins are very similar to how the built-in {include} function works, but insert plug-ins
are never cached, so that can be a way to overcome a platform limitation if you need to have
refreshed data on a cached template.

This type of plug-in is very useful for certain cases in which you would like Smarty not to cache
your template output, such as when you are generating advertising banners on the fly and changing
the template output to include them. In that specific scenario, Smarty's caching feature, while
extremely useful, will go against your business requirements and will need to be circumvented.

For instance, if you use the following code on your template:
{insert name="getRandomBanner" siteid="php" sectionid="articles"}

Smarty will in turn look for the insert_getRandomBanner function in your PHP script (which
could come from included files and such), and pass the siteid and sectionid parameters as one
associative array, as the first argument to this PHP function. This function is supposed to return
the appropriate value to Smarty, which will replace the {insert} tag with it. So if you wanted to
handle those requests, the following would be a good example of that function:

<?php
function insert_getRandomBanner($params)
{
 if ($params['siteid'] == 'php') {
 $html = '';
 } elseif ($params['siteid'] == 'asp') {
 $html = '';
 } else {
 $html = '';
 }

 return $html;
}
?>

The function above returns different results based on the siteid parameter.

Registering Plug-ins
So while Smarty will dynamically load plug-ins that are not already loaded when they are used in
templates, you can also register a plug-in manually via the following methods:

Type Method Signature to Register a Plug-in

Functions void register_function(string name, mixed impl [, bool cacheable
[, mixed cache_attrs]])

Modifiers void register_modifier(string name, mixed impl)

Block functions void register_block(string name, mixed impl [, bool cacheable
[, mixed cache_attrs]])

Compiler
functions

void register_compiler_function(string name, mixed impl
[, bool cacheable])

Resources void register_resource(string name, array functions)

Inserts No need for one—you pass the function name on the template file itself.

Download at Boykma.Com

Chapter 10

Please note that the parameter called impl in the table refers to the function or method name that
Smarty will call, and it can be one of the following:

• A string variable holding the function name
• An array of the form array($object, 'method_name')
• An array of the form array('Class_name', 'method_name')

Anyway, this feature to dynamically load plug-ins from PHP is good because you can quickly
plug some custom code into your Smarty templates without having to create a separate plug-in file
for it, or even following the function naming scheme on that file. As an example, we will quickly
create a new function to print out the current version numbers of both PHP and Smarty.

• Let's create a new PHP script called example_platform_info.php to test our
new plug-in:

 <?php
 include_once('include/Smarty.class.php');
 $smarty = new Smarty;
 $smarty->config_dir = 'templates';

 $smarty->register_function('platform_info', array('Info',
 'printPlatformDetails'));

 class Info
 {
 function printPlatformDetails($params, &$smarty)
 {
 echo 'Powered by PHP ' . phpversion();
 echo ' and Smarty ' . $smarty->_version;
 }
 }

 $smarty->display('templates/example_platform_info.tpl');
 ?>

As you can see, we registered a function called platform_info, and asked Smarty to statically call
the method name printPlatformDetails within the Info class. There's no need to even set the
function arguments on that method, but we need to have access to the $smarty variable to
dynamically display the version number.

• Create a new template file called example_platform_info.tpl to print out the
output of our plug-in:

 <html>
 <head>
 <title>Example Corp.</title>
 </head>
 <body>

 Welcome to our home page!

 <hr>
 {platform_info}

 </body>
 </html>

 195

Download at Boykma.Com

Extending Smarty with Plug-ins

• And this is what it will output once you run that script on your own web server:

So that gives a simple idea of what's possible through custom plug-ins. Of course, there's a very
big distinction between plug-in developers (usually programmers) and designers, but both of them
need to work together to implement new features or widgets in templates. Some of the plug-in
types described above will not be relevant to designers, such as a compiler function plug-in, but
normal function plug-ins or even modifier plug-ins are highly relevant to their work. Have that in
mind when you create your own template functions, so they are simple to use by someone who
may not be a coder.

Next, let's create a few more complicated plug-ins.

Example Plug-in: Calendar
Our first example plug-in will be used to dynamically build a table containing the days of a
particular month, just like what you would see if you opened your existing calendar application,
like Microsoft Outlook, iCal, or Evolution. You should be able to specify what month and year
you want from the template file, but if those parameters are not used, the current month and year
will be used instead.

After running our calendar plug-in we expect the following output:

 196

Download at Boykma.Com

Chapter 10

If possible the plug-in should be as simple to use as calling the function like:
{calendar month=4 year=2005}

As described before, if the month and year parameters are not provided, the current date will be
used instead.

So to get that far, let's first create the PHP script and Smarty template that will be used to call
our plug-in.

Create a new PHP script called example_calendar.php and put the following content in it:
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

$smarty->display('example_calendar.tpl');
?>

Follow this up by creating our template file, called example_calendar.tpl:
<html>
<head>
<title>Example Corp.</title>
</head>
<body>

<p><h2 style="text-align: center;">April 2005</h2></p>
{calendar month=4 year=2005}

</body>
</html>

 197

Download at Boykma.Com

Extending Smarty with Plug-ins

 198

Now that we have the requirements clearly specified, let's work on the plug-in itself. Since we
know that this will need to be a function plug-in, and the name of the function is {calendar}, the
resulting plug-in filename will be function.calendar.php and the PHP function inside it will
have to be called smarty_function_calendar.

<?php
/*
 * Smarty plugin
 * File: function.calendar.php
 * Type: function
 * Name: calendar
 * Purpose: Displays a calendar view of a month
 * Example: {calendar}
 * {calendar month=4 year=2005}
 * Install: Drop into plug-in directory
 */
function smarty_function_calendar($params, &$smarty)
{
 extract($params);
 $html_result = '';

 $time = time();
 // if the 'month' parameter is not used, then
 // use the current month instead
 if (!isset($month)) {
 $month = date("n", $time);
 }
 // if the 'year' parameter is not used, then
 // use the current year instead
 if (!isset($year)) {
 $year = date("Y", $time);
 }
 // unix timestamp for the first day of this month
 $first_day_ts = mktime(0, 0, 0, $month, 1, $year);

 // create the table header
 $html_result = '<table border="1">';
 $html_result .= '<tr>
 <th width="14%">Sunday</th>
 <th width="14%">Monday</th>
 <th width="14%">Tuesday</th>
 <th width="14%">Wednesday</th>
 <th width="14%">Thursday</th>
 <th width="14%">Friday</th>
 <th width="14%">Saturday</th>
 </tr>';

This is simple. The code simply checks for the optional month and year parameters and uses the
current day's month and year if they are not provided.

Next it will get a little more complicated, since we will have to dynamically display the first day
of the month on whatever day of the week it ends up on. That is, April 1st 2005 may end up on a
Friday, but the next month will not.

The code will also have to be sufficiently flexible to handle more than four weeks worth of days,
since if the first day of the month starts on a Saturday, the month will have five weeks, and so on.
Furthermore, the code will need to figure out how many days a specific month will have.

 $current_day = 1;
 $current_week = 1;
 // total days within this month
 $total_days = date("t", $first_day_ts);

Download at Boykma.Com

Chapter 10

 // the week day number that the first day of the
 // month falls on (Sunday = 0; Saturday = 6)
 $first_day = date("w", $first_day_ts);

 // loops through the days
 while ($current_day <= $total_days) {
 $html_result .= '<tr>';
 for ($i = 0; $i < 7; $i++) {
 if ((($current_week == 1)
 && ($i >= $first_day)) ||
 (($current_week > 1)
 && ($current_day <= $total_days))) {
 $html_result .= '<td valign="top">';
 $html_result .= $current_day ;
 if ((isset($values)) && (!empty($values[$current_day]))) {
 $html_result .= $values[$current_day];
 } else {
 $html_result .= ' ';
 }
 $html_result .= '</td>';
 $current_day++;
 } else {
 $html_result .= '<td> </td>';
 }
 }
 $html_result .= '</tr>';
 $current_week++;
 }
 $html_result .= '</table>';

 print $html_result;
}
?>

Running the PHP script above will generate the wanted output. Here are some possible ideas to
reuse this code and expand on it:

• A set of optional parameters that would allow you to specify a stylesheet class name
to be used on the heading of the calendar table, and another one for the actual day
cells. Maybe even a different class name for the currently selected day.

• A parameter to allow you to specify the content in each of those table cells, so you
could display meetings or appointments that you have on them, project deadlines,
holidays, birthdays that you want to keep track of, etc.

The calendar plug-in is a pretty neat idea as a function plug-in, since it allows you to separate
logic related to the layout (i.e. creating this HTML table of days on a month) from your normal
business logic code.

Example Plug-in: Auto-link URLs
Now let's create a modifier plug-in to dynamically create anchors out of URLs embedded within
text that we want to display on web pages. That's a nice usability feature for your users, creating
links automatically and saving your users from having to know HTML syntax or even having to
do a few extra steps on a web application.

 199

Download at Boykma.Com

Extending Smarty with Plug-ins

 200

While previously we provided an actual plug-in file that contained the source code for the
calendar function, this time we will reuse some existing PHP code, and turn it into a modifier
plug-in. The trick here is that we will use regular expressions to automatically turn text sections
such as http://www.example.com or even www.example.com into actual HTML anchors.

You could use this plug-in for a wide variety of tasks, such as displaying user-entered text that is
not already in HTML format, or even displaying plain text documents such as emails, which often
contain URLs like the above example ones.

The PHP code is pretty simple, but by no means is it complete in that it will handle any type of
URL. Here's a new PHP script that we will include into another script, called class.misc.php,
which will be stored in your libs directory:

<?php
class Misc
{
 function autoLinkURLs($text)
 {
 $text = preg_replace("'(\w+)://([\w\+\-\@\=\?\.\%\/\:\&\;]+)(\.)?'",
"\\1://\\2", $text);
 $text = preg_replace("'(\s+)www\.([\w\+\-
\@\=\?\.\%\/\:\&\;]+)(\.\s|\s)'", "\\1www.\\2\\3" , $text);
 return $text;
 }
}
?>

Since we are re-using this existing code, we will use the register_modifier routine to
dynamically tell Smarty that it should use this method to modify the given template variable.

Create a new file called example_auto_link_urls.php and put the following content in it:
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

include_once('libs/class.misc.php');
$smarty->register_modifier('auto_link_urls', array('Misc',
'autoLinkURLs'));

$content = 'Welcome to our web site!

If you have any questions, please contact us by filling up the form at:
http://www.example.com/contact.php

The Management.';
$smarty->assign(array(
 'content' => $content
));

$smarty->display('example_auto_link_urls.tpl');
?>

Here's the source of the associated template file, called example_auto_link_urls.tpl:
<html>
<head>
<title>Example Corp.</title>
</head>

Download at Boykma.Com

http://www.example.com/
http://www.example.com/

Chapter 10

<body>

{$content|nl2br|auto_link_urls}

</body>
</html>

And the output that this PHP script produces once it is requested:

Summary
We went through the basic concepts of Smarty plug-ins, such as their overall architecture and
design. The low-level details of writing your own plug-ins were also described, such as plug-in
types, and naming conventions for plug-in filenames and function names.

Several of the plug-ins cited were found through the public Smarty website, and the third-party
Smarty Wiki website, but you should also refer to search engines when trying to find new
plug-ins. Not every developer remembers to go back to the central repositories to store a copy
of their plug-ins.

Also, the three example plug-ins developed on this chapter are good stepping stones for more
flexible and complex plug-ins, so feel free to use those on your own projects.

Remember that the act of creating a new plug-in is only restricted by your imagination, so always
take enough time to think around good plug-in designs, especially with regard to plug-in types.
Always remember to choose the appropriate plug-in type for whatever task you need to perform.

But most of all, remember the design objective of templates—separating business logic from
layout logic. This means keeping your templates as simple as possible.

 201

Download at Boykma.Com

Download at Boykma.Com

11
Filters

While the majority of Smarty plug-ins consists of functions and modifiers, another type of plug-in
called filters gives you some extra functionality. Filters allow you to create plug-ins that interact
deeply with the inner workings of Smarty, by setting PHP function callbacks that will be executed
when certain phases of template parsing and execution are met.

Three different types of filters are:

• Prefilter
• Postfilter
• Output filter

Prefilters
Prefilter plug-ins are called right before the compilation of Smarty templates into PHP scripts.
This is a perfect solution for certain tasks related to the template sources themselves, such as
removing unwanted swear words. This is especially useful for content management systems where
users are allowed to exchange content on Smarty templates. Another useful action is stripping
comments and extra white space from JavaScript files, in order to optimize the download size of
your utility files.

The jStrip plug-in does exactly that and is available at the Smarty Wiki:
http://smarty.incutio.com/?page=jStrip.

Postfilters
Postfilter plug-ins are similar to prefilter ones, but they are executed after the compilation of
Smarty templates into PHP scripts. This is useful in some cases to add some extra PHP code to the
compiled template code, such as special headers or extra XML declarations.

Another example comes from the rel2abs plug-in, which replaces all relative URLs in a template file
with the corresponding absolute URI version. It is available at http://ownmedia.net/products/.

Download at Boykma.Com

Filters

 204

Output Filters
Output filter plug-ins are called when Smarty is actually ready to display the output of the
generated compiled template to the browser. This is different from the previous type because
postfilter plug-ins are executed on the compiled templates before they are saved to disk.

Be extra careful with the details on this one, as output filters will not be executed until the output
is generated when the template is executed. After the output is modified by this type of filter, it is
only saved into Smarty's cache system (if that is indeed enabled).

Creating Filters
There are three main ways to create filters and make them available on Smarty templates:

• Register a filter plug-in at run time and point Smarty to a PHP function callback
from within the template script by using one of the register_*filter functions.

• Tell Smarty to automatically load a filter from the plugin directory with the
load_filter function.

• Manually set the autoload_filters Smarty property to make it load the appropriate
filters automatically for you.

Let's go over these different ways now. To register a filter plug-in at run time, you need to use one
of the following Smarty functions:

Type Method signature to register a plug-in

Prefilters void register_prefilter(mixed impl)

Postfilters void register_postfilter(mixed impl)

Output filters void register_outputfilter(mixed impl)

Please note that the parameter called impl above refers to the function or method name that
Smarty will call, and it can be one of the following:

• A string value holding the function name
• An array of the form array($object, 'method_name')
• An array of the form array('class_name', 'method_name')

When actually writing the PHP code for the filter plug-ins, follow these rules for the function
arguments:

Type Function signature when writing the filter

Prefilters string function_name(string source, object smarty)

Postfilters string function_name(string source, object smarty)

Output filters string function_name(string output, object smarty)

Download at Boykma.Com

Chapter 11

What this means is that for filter plug-ins, Smarty will pass the template source or template output
as the first argument and the special Smarty object as the second argument to your PHP function,
and expect you to return the modified source or output from that function.

Registering a Filter at Run Time
As an example, here's how you would use register_outputfilter to register an output filter
at run time:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

function highlight($output, &$smarty)
{
 // highlight the word "smarty" on our template source
 return str_replace('smarty', 'smarty', $output);
}

$smarty->register_outputfilter('highlight');

$smarty->display('templates/example1.tpl');
?>

As you can see, the PHP function is being registered at run time with Smarty, and it will return a
modified version of the output, highlighting the word Smarty. While this is a very simple example, we
will expand it soon with a more complex version to dynamically highlight search keywords.

You could also pass an array to register_outputfilter (or any of the other register_*filter
functions) to tell Smarty to call the given class or object method, as shown below:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

class Misc
{
 function highlight($output, &$smarty)
 {
 // highlight the word "smarty" on our template source
 return str_replace('smarty', 'smarty', $output);
 }
}

$smarty->register_outputfilter(array('Misc', 'highlight'));

$smarty->display('templates/example1.tpl');
?>

Manually Loading a Filter
There's also another way to load filters into Smarty, and that is the usual way of creating separate
plug-in files, and storing them into a predefined directory. Smarty will then include the given filter
plug-in file, and use it when needed.

 205

Download at Boykma.Com

Filters

 206

Continuing with the standard format of the register_*filter functions, the filter plug-in
filename should conform to these rules:

Type String to use in plug-in filename

Prefilters prefilter

Postfilters postfilter

Output filters outputfilter

For instance, if you would like to create an output filter plug-in called append_benchmark_data,
then the filename should be outputfilter.append_benchmark_data.php. If the same plug-in were
supposed to be a prefilter one, then the filename would be prefilter.append_benchmark_data.php,
and so on. This filter plug-in file should be saved under Smarty's plugin sub-directory.

The same rules apply for the function name to be placed within the plug-in file. For our first
example above of an output filter plug-in called append_benchmark_data, we would need to
create the following PHP script:

<?php
function smarty_outputfilter_append_benchmark_data($source, &$smarty)
{
 global $benchmark;

 $source .= '<div id="benchmark">';
 $source .= 'Generated in ' . $benchmark . ' secs.';
 $source .= '</div>';

 return $source;
}
?>

The plug-in above will append some extra HTML to the generated output from a template, and
will return that modified output, referenced above in the $source variable.

Now that we have the plug-in file created correctly, we still need to tell Smarty that we want it to
use this filter when processing templates. Since this is a manual process, you will use the
load_filter Smarty method to do this, as shown next:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

$smarty->load_filter('output', 'append_benchmark_data');

$smarty->display('templates/example1.tpl');
?>

The first parameter to the load_filter method is the filter type (possible values are pre, post, and
output). This method will tell Smarty that we want it to use this plug-in.

Download at Boykma.Com

Chapter 11

Automatically Loading a Filter
One obvious downside of the previous method of loading a filter plug-in is that you need to use
the load_filter method on every template that you want the filter to execute. What if you want
the filter to run on your entire website or application? This can be done by automatically loading
filters with the autoload_filters Smarty property.

We can do this by changing the value of this variable directly in the Smarty source code. Look for
the Smarty.class.php file and change the autoload_filters variable, as shown next:

<?php
// inside Smarty.class.php ..

 /**
 * This indicates which filters are automatically loaded into Smarty.
 *
 * @var array array of filter names
 */
 var $autoload_filters = array('output' => array('append_benchmark_data'));

// ..
?>

The change above will tell Smarty to always load the given output filter plug-in. You will still need
to create the plug-in file and name the function within it as explained in the previous section.

If you would always like to load several different types of filters, you can do so by specifying the
appropriate filter type in the autoload_filters variable, as shown next:

<?php
// inside Smarty.class.php ..

 /**
 * This indicates which filters are automatically loaded into Smarty.
 *
 * @var array array of filter names
 */
 var $autoload_filters = array(
 'output' => array('append_benchmark_data'),
 'pre' => array('remove_comments', 'hide_emails'),
 'post' => array('prepend_compilation_data')
);

// ..
?>

As you can see, we are now registering one output filter, two prefilter plug-ins, and another
postfilter one.

Filter #1: Remove HTML Comments
One of the classic examples for a pre-filter plugin is one that removes HTML comments from
templates. Usually these comments are only relevant for you while developing your website or
web application, so it makes sense to remove them to decrease the download size for your pages.
This will not result in any visible changes to your templates or pages, but your users will
appreciate the extra effort.

 207

Download at Boykma.Com

Filters

 208

Create a new PHP script called remove_comments.php with the following content:
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

function remove_html_comments($source, &$smarty)
{
 // remove any html comments from the template source, even
 // if they span multiple lines
 return preg_replace('/<!--.*-->/Ums', '', $source);
}

$smarty->register_prefilter('remove_html_comments');
$smarty->display('remove_comments.tpl');
?>

Here is the source for the matching template file, called remove_comments.tpl:
<!--
This page will serve as...
-->

<html>
<head>
<title>Removing HTML Comments</title>
</head>

<body>

<!-- page title -->
<h1>Removing HTML Comments</h1>

<!-- real content starts here -->
<p>
 In order to remove HTML comments, you must
 create a Smarty filter.
</p>

</body>
</html>

Notice the HTML comments in bold above. Our objective here is to completely remove those
entities to save some bandwidth. Now try running the remove_comments.php script with your web
browser, and you should see the rendered page. View the source of that page, and it should look
like the following:

<html>
<head>
<title>Removing HTML Comments</title>
</head>

<body>

<h1>Removing HTML Comments</h1>

<p>
 In order to remove HTML comments, you must
 create a Smarty filter.
</p>

</body>
</html>

Download at Boykma.Com

Chapter 11

Voilà! We now have the source without any HTML comments, but if you are paying extra
attention, you should have noticed that where the HTML comments were, we now have empty
lines. For extra neatness, let's go ahead and improve our PHP script just a little bit to trim off any
extra whites pace lines like the ones in the above file.

We are lucky that Smarty already provides an output filter plug-in exactly for this purpose, called
trimwhitespace. Since it is already included in the Smarty distribution, all we need to do is to
load that filter. Here's the modified source code for remove_comments.php:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

function remove_html_comments($source, &$smarty)
{
 // remove any html comments from the template source, even
 // if they span multiple lines
 return preg_replace('/<!--.*-->/Ums', '', $source);
}

$smarty->register_prefilter('remove_html_comments');
$smarty->load_filter('output', 'trimwhitespace');
$smarty->display('remove_comments.tpl');
?>

No changes are needed to our existing remove_comments.tpl template. Try running the modified
PHP script with your web browser, and you should see a different HTML source for that page, as
shown next:

<html>
<head>
<title>Removing HTML Comments</title>
</head>
<body>
<h1>Removing HTML Comments</h1>
<p>
In order to remove HTML comments, you must
create a Smarty filter.
</p>
</body>
</html>

No visual changes will happen with these modifications, but the overall page size should decrease
a little bit. While the improvements are not impressive with this example template, the changes to
larger pages will be significant.

Filter #2: Benchmark Information
One common need for web developers is to profile their PHP applications to make sure that
everything is properly set up performance-wise. The usual way to go about this is to record the
time in various portions of code, and then calculate how long each section is taking, and then take
measures to improve the performance.

However, when doing this benchmarking work manually by timing each section of the PHP code,
the template parsing and compilation steps will not be taken into account. One of the workarounds is
to create a postfilter plug-in that simply records the time when Smarty finishes the compilation of

 209

Download at Boykma.Com

Filters

 210

a template, and another output filter plug-in to calculate the processed time and add the generated
benchmark information to the template output. We will go over these plug-ins next, starting with the
overall benchmark script.

The following is the full source code for benchmark.php, which is based on the previous
example's source code:

<?php
ini_set("include_path",".;c:\\server\\xampp\\php\\pear\\");
include_once('libs/Smarty.class.php');
$smarty = new Smarty;
$smarty->force_compile = TRUE;

// PEAR's Benchmark::Timer package
include_once('Benchmark/Timer.php');
$bench = new Benchmark_Timer;
$bench->start();

function register_compilation($source, &$smarty)
{
 $GLOBALS['bench']->setMarker('Finished compilation');
 return $source;
}

function append_benchmark_results($output, &$smarty)
{
 $GLOBALS['bench']->stop();
 $results = $GLOBALS['bench']->getProfiling();
 $output .= '<table border=1>';
 $output .=

'<tr><th>Marker</th><th>Diff</th><th>Total</th></tr>';
 for ($i = 0; $i < count($results); $i++) {
 $output .= '<tr><td>' . $results[$i]['name'] . '</td>';
 $output .= '<td>' . $results[$i]['diff'] . '</td>';
 $output .= '<td>' . $results[$i]['total'] .

'</td></tr>';
 }
 $output .= '</table>';

 return $output;
}

function remove_html_comments($source, &$smarty)
{
 // remove any html comments from the template source, even
 // if they span multiple lines
 return preg_replace('/<!--.*-->/Ums', '', $source);
}

$bench->setMarker('Before display');

$smarty->register_prefilter('remove_html_comments');
$smarty->register_postfilter('register_compilation');
$smarty->register_outputfilter('append_benchmark_results');
$smarty->load_filter('output', 'trimwhitespace');
$smarty->display('benchmark.tpl');
?>

Download at Boykma.Com

Chapter 11

There are many details here. To start with, we are using PEAR's Benchmark_Timer class to
measure the time difference between each portion of the code. You will need to replace the path
on the second line of your code with the path where your PEAR installation is stored. We also
created two new filter plug-ins, one being a postfilter called register_compilation to be run
right after the compilation phase of Smarty. The other one called append_benchmark_results will
be executed right before sending the template output back to the web browser, and we will use it
to calculate the profile information, and build a HTML table with the results.

One very important detail here is critical to making these plug-ins work the way we want them to,
and that is to force Smarty to always compile the given template. We do that by setting Smarty's
force_compile property to TRUE. If that change is not done, the postfilter plug-in will only be
executed when a template is compiled into a PHP script. Since the benchmarking example is
strictly for development purposes, we are performing this change. You should be sure to disable
this property when pushing your website or application onto its production server, as forcing the
compilation of templates will result in a big performance loss.

Here is the source for the benchmark.tpl template file, which is the same as the previous
example's template:

<!--
This page will serve as...
-->

<html>
<head>
<title>Removing HTML Comments</title>
</head>

<body>

<!-- page title -->
<h1>Removing HTML Comments</h1>

<!-- real content starts here -->
<p>
 In order to remove HTML comments, you must
 create a Smarty filter.
</p>

</body>
</html>

 211

Download at Boykma.Com

Filters

Now try running the given PHP script with your web browser. You should see something similar
to the following figure:

The benchmark results are properly appended to the template output, and you can analyze them to
decide potential changes to your PHP code. The first column displays the label of each benchmark
marker, while the other columns display the difference in time between that marker and the
previous one, and the total execution time so far. As you can see, the total execution time is
0.047573 seconds for this trial run.

Filter #3: Compress Output with gzip
Another very good use case for output filters is to change the way your website or application
sends data back to the web browser. One of the best ways to improve the performance of your
pages is to compress them, either with the Remove HTML Comments filter plug-in discussed before,
or with a real compression algorithm, such as gzip. Most web browsers nowadays work very well
with compressed web pages.

We will now reuse an output filter that will compress the template output from Smarty, and return
that compressed output to the web browser, while passing the appropriate HTTP headers. The
filter plug-in source code is available below. Copy this source code and save it as a file named
outputfilter.gzip.php under Smarty's plugin sub-directory.

<?php
/*
 * Type: outputfilter
 * Name: gzip
 * Author: Joscha Feth, joscha@feth.com
 */
function smarty_outputfilter_gzip($tpl_source, &$smarty)

 212

Download at Boykma.Com

Chapter 11

{
 /* the compression level to use
 default: 9

 0 -> 9
 less compressed -> better compressed
 less CPU usage -> more CPU usage

 */
 $compression_level = 9;

 /* force compression, even if gzip is not sent in HTTP_ACCEPT_ENCODING,
 for example Norton Internet Security filters this, but 95% percent of
 the browsers do support output compression, including Firefox
 and Opera.
 default: yes
 */
 $force_compression = true;

 // message to append to the template source, if it is compressed
 $append_message = "\n<!-- zlib compression level " .
 $compression_level . " -->";

 // only compress the output if:
 // - headers were not sent yet
 // - zlib extension is available
 // - caching is disabled in smarty
 // - correct encoding is sent, or compression is forced
 if ((!headers_sent()) && (extension_loaded('zlib')) && (!$smarty->caching)
 && (strstr($_SERVER['HTTP_ACCEPT_ENCODING'], 'gzip')
 || $force_compression)) {
 $tpl_source = $tpl_source . $append_message;
 $tpl_source = gzencode($tpl_source, $compression_level);
 header('Content-Encoding: gzip');
 header('Vary: Accept-Encoding');
 header('Content-Length: ' . strlen($tpl_source));
 }
 return $tpl_source;
}
?>

The only requirement for this output filter to work, as is true with other filter plug-ins, is for you to
load it in PHP scripts with the load_filter() method, or add it to the list of automatically loaded
filters with the autoload_filters property. No visual changes should be noticed, but the output
will be compressed and therefore the load times for most pages will be quicker.

Filter #4: Search Engine Highlight
One of my favorite plug-ins from Chapter 10 was used to dynamically highlight search keywords
entered by users of your site. Let's expand on that idea and do the same thing for users reaching
our website from a search engine, such as Google. The HTTP protocol mandates that web
browsers pass a special value each time users click on links from one page to another, so the
resulting page is aware of where this user came from. This is called the referrer field, and it may
be empty if the user types the URL of your web page manually on the address bar of the browser.

This is very useful information for websites, as it allows you to see how effective a marketing
campaign is going, or even a source of information to generate reports based on where people
often find out about your website.

 213

Download at Boykma.Com

Filters

 214

So, using that special bit of information, let's build a Smarty output filter plug-in that will be called
each time the parsed and generated template is about to be sent to the browsers of our users, and
then highlight any search keywords that may have been used.

Let's create a new set of PHP script and template files to show how this can be done.

Create a new PHP script called search_highlight.php and put the following on it:
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

$smarty->load_filter('output', 'search_highlight');
$smarty->display('search_highlight.tpl');
?>

Create a new template file called search_highlight.tpl with the following:
<html>
<head>
<title>Highlighting Search Keywords</title>
</head>
<body>

<h1>Random Content</h1>

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Pellentesque
leo. Aliquam vulputate enim eget enim. Quisque nunc. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Donec iaculis. Duis dignissim pede vitae purus. Ut gravida eros sit amet
sapien. Donec ipsum leo, porta in, rhoncus vitae, eleifend vel, mi.
aecenas non risus.</p>

</body>
</html>

As you can see above, this is a simple template file, but we can use it as a test page for our search
highlight plug-in. This is because we want to stress that an output filter doesn't really require any
template-level changes, since the changes that it will perform will be done after the template is
parsed and generated.

Create a new plug-in file called outputfilter.search_highlight.php and put the following
content in it:

<?php
/*
 * Smarty plugin
 *
 * File: outputfilter.search_highlight.php
 * Type: output filter
 * Name: search_highlight
 * Purpose: Automatically highlights search keywords when a user is redirected
 * by Google to your web pages.
 * Install: Drop into plugin directory, then use load_filter() to manually
 * load plugin into Smarty, or setting the $autoload_filters
 * variable.
 */
require_once $smarty->_get_plugin_filepath('modifier', 'google_highlight');

function smarty_outputfilter_search_highlight($tpl_output, &$smarty)

Download at Boykma.Com

Chapter 11

{
 // check if we have anything on HTTP_REFERER
 $referrer = getenv('HTTP_REFERER');
 if (!empty($referrer)) {
 $pieces = parse_url($referrer);
 // only highlight search keywords if the user
 // is coming from google.com
 if (stristr($pieces['host'], 'google.com')) {
 $params = explode('&', $pieces['query']);
 $query = array();
 foreach ($params as $param) {
 list($key, $value) = explode('=', $param);
 $query[$key] = urldecode($value);
 }
 // only do something if we have actual
 // search keywords to play with
 if (!empty($query['q'])) {
 $tpl_output = smarty_modifier_google_highlight($tpl_output,
 $query['q']);
 }
 }
 }
 return $tpl_output;
}
?>

What this code is really doing is going through the HTTP_REFERER environment variable, which
will be populated by the full URL of the search engine page that was generated by our user
searching for something. For instance, if I were to search on the words random and sapien on
Google, the URL would end up being the following:
http://www.google.com/search?hl=en&q=random+sapien&btnG=Google+Search

You can manually change the $referrer variable on the search highlight plug-in to the
URL given above if you don't want to wait for Google to crawl your website.

The code will first check if there's anything in the HTTP_REFERER variable, then check if the
referrer page was a search page from Google, then parse the query string on that URL for the
actual search keywords, which are stored in $query['q']. After parsing the URL and finding the
search keywords, we can re-use the existing Google Highlight plug-in to highlight the search terms.

 215

Download at Boykma.Com

http://www.google.com/search?hl=en&q=random+risus+sapien&btnG=Google+Search

Filters

The following is what you should see if you run the PHP script on your browser. However, you
would need to have searched Google for the words random and sapien for the page to change as it
did below.

Summary
We covered all the low-level details about filter plug-ins, including how to create them from
scratch by writing your own separate plug-in files, and how to point Smarty to existing PHP
functions, classes, or objects to perform changes to templates. We also discussed the differences
between the three types of filter plug-ins, and which type is appropriate for a particular function.

Keep in mind the low-level details of how Smarty compiles templates into PHP scripts, and how
that affects the inner workings of postfilter plug-ins. Remember to set force_compile to TRUE
when implementing things in your development environment, but also remember to disable it
when pushing your website or application to a production environment.

Filters are a perfect way to tweak things in Smarty to provide a better service to your users, so
always keep that in mind when thinking about a new feature.

 216

Download at Boykma.Com

12
Internationalization

One of the holy grails of web development is internationalization (usually shortened to i18n),
especially as the industry matures and needs to cover several different markets and countries.
Often you would like to have the same website translated into different languages, and that's the
subject of this chapter.

So while this is a pretty simple objective, we do face some challenges on how to properly design
the architecture of your web application while using Smarty. We have two different types of
requirements for this:

• Translation of an entire set of templates into different languages, while keeping the
templates the same. This is a perfect example for a web application, since you want
to deliver the same features to all of your users.

• Translation of a complete set of templates, and changing a few of the templates for
some of the different languages. That usually happens for websites that require some
changes to a few pages, like special promotions that are only supposed to happen on
a specific country, and so on.

We will go over the first requirement over the next few sections. You should be able to extend it
pretty easily to be able to override any of the default translated templates with a customized one
later on.

Translation Infrastructure: Gettext
The gold standard for the i18n community, as far as UNIX (and consequently PHP) is concerned,
is the use of the Gettext project. This is a set of GNU tools designed to help translate text strings
on the fly, from one language to another.

Gettext works by extracting text strings from source code files, and storing them into message
catalogs. These catalog files are stored into a directory structure that is standardized, and the
translated string is looked up at run time. If the translated text string is not found, or doesn't have a
translation available yet, the original one will be used instead.

Download at Boykma.Com

Internationalization

 218

So here's an overview of the workflow:

• Extract the text strings from source code into a message catalog file, named
messages.po by default.

• Edit the messages.po file to translate the text strings into another language.
• When done, convert the modified messages.po into a binary file, called

messages.mo by default, that the Gettext extension will understand and use.
• Set up the PHP code to use the appropriate translation file, by using the Gettext functions.

We will go over the details of using Gettext with PHP over the next few sections.

Configuring PHP with Gettext
In order to make any of the following examples work with your PHP installation, you will need to
make sure that you have the Gettext extension enabled. Follow the following instructions:

• Open your php.ini configuration file, usually located in c:\windows\php.ini on
Windows systems.

• Scroll down in this file until you find a bunch of lines that begin with the expression
;extension=. All the lines that contain a semi-colon on the front are disabling the
given PHP extensions.

• Find the line that contains the php_gettext.dll extension, and remove the
semi-colon from the beginning of the line. If there is no line in there, write a new
line, like so:
extension=php_gettext.dll

• Save the changes in the php.ini file.
• Restart the web server software that you are using.

These instructions are for Windows users. If you are using Linux or another UNIX operating
system then these steps will not work for you. The easiest way to do this is to get the appropriate
package from your vendor, such as an RPM, Debian package, or even installing from FreeBSD's
port collection.

Simple PHP Example
Let's go through the workflow outlined before about how to work with Gettext, and translate a
simple PHP script, to get a handle on how everything works together. You need to create a new
PHP script called simple_example.php and put the following content in there:

<?php
$language_code = 'pt_BR';
putenv("LANG=$language_code");
setlocale(LC_ALL, $language_code);

$domain = 'smartybook';
bindtextdomain($domain, './locale');
textdomain($domain);
?>

Download at Boykma.Com

Chapter 12

<h1>Translation to Language Code: <?php echo $language_code; ?></h1>

<?php
echo gettext("A message to translate") . "
\n";
echo gettext("second message") . "
\n";
echo gettext("third message") . "
\n";
?>

There are several interesting things happening in the script above:

• We are creating a $language_code variable and setting the 'pt_BR' value in there.
That's the language code for Brazilian Portuguese, which will be the target
translation language for our script.

• After that, we set the LANG environment variable and the LC_ALL locale constant to
that language code.

• Then, we create a $domain variable specifying the message domain. This is usually
the name of your application, or website.

• The bindtextdomain function associates the domain with a given path. This tells
Gettext where to look for the translated catalog files, which in our example will be
smartybook.mo.

• The call to the textdomain function sets the default domain. This is used to tell
Gettext which domain (similar to a word dictionary) to search for translated strings
when calling the gettext function.

• Finally, the calls to the gettext function will return the actual translated text strings.

Of course, the PHP script given above will only work when we set up the proper Gettext files, and
place them in the appropriate directories. We will take a look at setting up Gettext files in the next
section. One important note here is that xgettext will only extract text strings contained within
double quotes, and will completely ignore the ones found inside single quotes. So as a guideline
for your PHP scripts, if you want to translate messages with Gettext, always use double quotes.

Setting Up the Gettext Files
Gettext works by looking through a local directory structure for the translated catalog files. Here's an
example directory structure for an application that is translated to German and Brazilian Portuguese:

/locale
 /de
 /LC_MESSAGES
 smartybook.po
 smartybook.mo
 /pt_BR
 /LC_MESSAGES
 smartybook.po
 smartybook.mo

You can put the locale directory anywhere you want, since that's configurable on the call to the
bindtextdomain function. The smartybook.po file is not necessary in those directories, but it's
nice to keep everything together like that, to make things easier later when you need to update the
translation files for a particular language.

 219

Download at Boykma.Com

Internationalization

 220

As mentioned before, the first step in the whole translation process is to generate the message file,
which in our example is called smartybook.po. There is a ready-to-use utility that will extract all
text strings from a set of files, and that utility is called xgettext. Here's how to do this:
$ xgettext -o smartybook.po -n *.php

The command above will parse all PHP scripts on the current directory for text strings, and will
output the ones it finds to the smartybook.po file. The –n switch is used to include extra
information such as the filename and line number at which each text string was found.

By running that command, we end up with the following content on smartybook.po:
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 2005-10-09 18:38-0400\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: simple_example.php:9
msgid "A message to translate"
msgstr ""

#: simple_example.php:10
msgid "second message"
msgstr ""

#: simple_example.php:11
msgid "third message"
msgstr ""

As you can see, xgettext found the three text strings that were passed to the gettext function
and placed inside the message file. The file above will be used now to translate the three text
strings into the proper translation in Brazilian Portuguese. The following snippet is the proper
translated message file:

Smarty Book
Copyright (C) 2005 Joao Prado Maia
This file is distributed under the same license as the PACKAGE package.
Joao Prado Maia <jpm@pessoal.org>, 2005.

#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: Smarty Book\n"
"POT-Creation-Date: 2005-10-09 18:38-0400\n"
"PO-Revision-Date: 2005-10-09 18:38-0400\n"
"Last-Translator: Joao Prado Maia <jpm@pessoal.org>\n"
"Language-Team: Brazilian Portuguese Team <pt_BR@pessoal.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=ISO-8859-1\n"
"Content-Transfer-Encoding: 8bit\n"

Download at Boykma.Com

Chapter 12

#: simple_example.php:9
msgid "A message to translate"
msgstr "Uma mensagem para traduzir"

#: simple_example.php:10
msgid "second message"
msgstr "segunda mensagem"

#: simple_example.php:11
msgid "third message"
msgstr "terceira mensagem"

Now that we finally have a translated message file, let's generate the binary message catalog.
There's yet another utility to perform this task called msgfmt, and here's the usage:
$ msgfmt -o smartybook.mo smartybook.po

Now you should have a smartybook.mo catalog file to use. The last remaining step is to go back to
the directory structure of the locale path, and move the files into the proper location. In our example,
that would mean moving the smartybook.mo file into the locale/pt_BR/LC_MESSAGES directory:
$ mv smartybook.mo locale/pt_BR/LC_MESSAGES/

Now we should be ready to test it. Load the simple_example.php script with your web browser,
and you should see the following output:

There you go! We now have a fully translated web page. Even though this is a simple example,
you could expand its usage easily by parsing several PHP scripts and using the translated output in
your application.

 221

Download at Boykma.Com

Internationalization

 222

Using Gettext with Smarty
So while the previous example is interesting and gives us a nice introduction to how Gettext really
works, and how to apply it to PHP scripts, our real objective is to use it with Smarty templates in
some way that allows us to avoid having to duplicate the template structure across languages.

There are several ways to do this, which include the following:

• Create a special Smarty block function (called {translate}, perhaps), and translate
the contents into a different language dynamically that way.

• Have each content section passed from PHP, and translated on the fly with the
method that was described before.

• Pass the translated content to each template by using Smarty config files.

Each of those methods has its own weaknesses:

• By creating a block function, we lose the automatic extraction of text strings that
comes from the use of the xgettext utility. Since it will not generate the PO files
automatically for us, we will need to create a separate script to do that.

• By passing each content section from the PHP script, we will make the template files
harder to use and maintain, since it will not be immediately clear which section we
are changing at any time.

• Using Smarty config files brings the same problem, but with the extra complexity of
having to use a different file for the translated text strings.

With that in mind, let's use a Smarty block function to translate the text strings, and worry about
the automatic generation later, as it shouldn't be extremely difficult to parse the Smarty templates
ourselves and create the PO file.

Hopefully, there's a ready-to-use Smarty plug-in designed exactly for this purpose. As people say
on the Internet, if you need to do something, you are probably not the first one and an open-source
project already exists. In this case the project is called Smarty Gettext and is being maintained by
Sagi Bashari. It is licensed under both the GPL and LGPL licenses, so you are pretty much free to
use it, make changes to it, and distribute those changes. You may want to check back on the
project website at the following URL: http://sourceforge.net/projects/smarty-gettext/.

This project already includes everything we need, such as the block function (called {t} in this
case), and also a separate PHP script that extracts text strings from Smarty templates into C files
that will then be parsed by xgettext to generate the needed PO file.

In order to install this Smarty plug-in, all we need to do is to copy the source code file called
block.t.php to the Smarty plug-ins directory.

Let's go over an example of translating text strings directly from Smarty templates. Since we
already have a ready-to-use smartybook.mo catalog file, let's reuse the same text strings in our
template. First, let's create a new PHP script called gettext1.php with the following content:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

Download at Boykma.Com

http://sourceforge.net/projects/smarty-gettext/

Chapter 12

$language_code = 'pt_BR';
putenv("LANG=$language_code");
setlocale(LC_ALL, $language_code);

$domain = 'smartybook';
bindtextdomain($domain, './locale');
textdomain($domain);

$smarty->display('gettext1.tpl');
?>

This PHP script doesn't do anything fancy that we haven't seen before. It simply creates a Smarty
object, and then sets up the required gettext environment with the functions we covered before.
Here's the source for the gettext1.tpl template file:

<html>
<head>
<title>First Smarty-Gettext Example</title>
</head>
<body>
<h1>First Smarty-Gettext Example</h1>
<h2>#1: {t}A message to translate{/t}</h2>
<h2>#2: {t}second message{/t}</h2>
<h2>#3: {t}third message{/t}</h2>
</body>
</html>

As you can see, we are re-using the same text strings we used before, but this time we are using
the {t} block function around them. That template code will pass the given text strings to the
Smarty Gettext block plug-in, which will call the gettext function on them, and return the
translated messages.

This is how the template looks like once executed:

 223

Download at Boykma.Com

Internationalization

And that's exactly what we wanted it to look like. Now let's see what happens when you add a new
text string to be translated, but there is no associated translation available on the smartybook.mo
file. Change the gettext1.tpl template, and put the following content in it:

<html>
<head>
<title>First Smarty-Gettext Example</title>
</head>

<body>

<h1>First Smarty-Gettext Example</h1>

<h2>#1: {t}A message to translate{/t}</h2>
<h2>#2: {t}second message{/t}</h2>
<h2>#3: {t}third message{/t}</h2>
<h2>NEW: {t}fourth message{/t}</h2>

</body>
</html>

No changes are necessary on the PHP script itself. Reload the PHP script on your web browser,
and you should see the following in there:

As you can see, the new text string was not translated, and the original message was returned by
the plug-in. It might not be always simple to quickly spot a missing translation, but it's a nice
feature to have in any case.

However, since our real objective is to have a completely translated website or application, let's go
over the details of how to manage text strings on Smarty templates. It turns out that the Smarty
Gettext plug-in already provides all the tools we need.

 224

Download at Boykma.Com

Chapter 12

Generating a PO File
The first step to expand our usage of the Smarty Gettext plug-in is to start using the {t} block
function on the other messages on our template file. Let's change it so that all the messages are
translated on the fly.

The following is the source code for a new version of the gettext1.tpl template file, renamed
to gettext2.tpl:

<html>
<head>
<title>{t}First Smarty-Gettext Example{/t}</title>
</head>

<body>

<h1>{t}First Smarty-Gettext Example{/t}</h1>

<h2>#1: {t}A message to translate{/t}</h2>
<h2>#2: {t}second message{/t}</h2>
<h2>#3: {t}third message{/t}</h2>
<h2>#4: {t}fourth message{/t}</h2>

</body>
</html>

We also need a new PHP script to accompany this template file. We will call this script
gettext2.php and the following is its source code:

<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

$language_code = 'pt_BR';
putenv("LANG=$language_code");
setlocale(LC_ALL, $language_code);

$domain = 'smartybook';
bindtextdomain($domain, './locale');
textdomain($domain);

$smarty->display('gettext2.tpl');
?>

The Smarty Gettext plug-in comes with a PHP script called tsmarty2c.php, and it will extract all
text strings between {t} and {/t}, and output the appropriate C code, which should then be used
by xgettext to generate the PO file. Here's a walkthrough of how this works:

• First run the tsmarty2c.php utility to extract the text strings from the template.
Here's the command that should be run:
$ php –q tsmarty2c.php templates/gettext2.tpl > text_strings.c

• The text_strings.c file should contain the appropriate C code to be passed on to
xgettext. Here's the source code of that file from the command above:
/* templates/gettext2.tpl */
gettext("First Smarty-Gettext Example");

/* templates/gettext2.tpl */
gettext("First Smarty-Gettext Example");

 225

Download at Boykma.Com

Internationalization

 226

/* templates/gettext2.tpl */
gettext("A message to translate");

/* templates/gettext2.tpl */
gettext("second message");

/* templates/gettext2.tpl */
gettext("third message");

/* templates/gettext2.tpl */
gettext("fourth message");

• Now use the xgettext utility just as described previously in this chapter, but
targeting this new C file. The following is the command that should be executed:
$ xgettext -o smartybook.po --join-existing --omit-header --no-location
text_strings.c

• And the following are the contents of the modified smartybook.po file:
Smarty Book
Copyright (C) 2005 Joao Prado Maia
This file is distributed under the same license as the PACKAGE package.
Joao Prado Maia <jpm@pessoal.org>, 2005.

#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: Smarty Book\n"
"POT-Creation-Date: 2005-10-09 18:38-0400\n"
"PO-Revision-Date: 2005-10-09 18:38-0400\n"
"Last-Translator: Joao Prado Maia <jpm@pessoal.org>\n"
"Language-Team: Brazilian Portuguese Team <pt_BR@pessoal.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=ISO-8859-1\n"
"Content-Transfer-Encoding: 8bit\n"

msgid "A message to translate"
msgstr "Uma mensagem para traduzir"

msgid "second message"
msgstr "segunda mensagem"

msgid "third message"
msgstr "terceira mensagem"

msgid "First Smarty-Gettext Example"
msgstr ""

msgid "fourth message"
msgstr ""

• It worked perfectly! Now all we need to do is modify the PO file and translate the
two new text messages. Here are the new translations:
msgid "First Smarty-Gettext Example"
msgstr "Primeiro Exemplo do Smarty-Gettext"

msgid "fourth message"
msgstr "quarta mensagem"

• After saving the changes, convert the modified file with the msgfmt utility, and move
it into the appropriate location:
$ msgfmt -o smartybook.mo smartybook.po

$ mv smartybook.mo locale/pt_BR/LC_MESSAGES/

Download at Boykma.Com

Chapter 12

There you go. You should be able to open the gettext2.php PHP script with your web browser,
and see the following output:

The output shows that our script is working fine, and all text messages are being translated on the
fly. Let's look at some other more advanced features of this plug-in.

Advanced Features of Smarty Gettext
While the previous example was perfect for a simple web page, things start getting more
complicated when we need to pass information from PHP to Smarty. This is what happens if we
need to translate the following expression: , where There are X customers waiting for Y orders X
and Y are both variable values.

For the expression above, we could just translate that expression by separately translating the
following three messages:

• There are
• customers waiting for
• orders

We would then have to join them together afterwards. That's a valid way of doing this, but it's
much more complex than having to translate just one phrase. It's also a potential translation
problem as translators might not know what the context is for each of these expressions and even
more because the required order of these expressions or the positions for the numbers might differ
in different languages.

In any case, Smarty Gettext provides a nice and easy-to-use feature for these issues. You may pass
parameters to a translated string, and the plug-in will take care of substituting the parameters in the
resulting translated message. Let's go for a simple example of this feature.

 227

Download at Boykma.Com

Internationalization

 228

Here's the source code for parameters.php:
<?php
include_once('libs/Smarty.class.php');
$smarty = new Smarty;

$language_code = 'pt_BR';
putenv("LANG=$language_code");
setlocale(LC_ALL, $language_code);

$domain = 'smartybook';
bindtextdomain($domain, './locale');
textdomain($domain);

$smarty->assign('customers', 6);
$smarty->assign('orders', 9);

$smarty->display('parameters.tpl');
?>

The following are the contents of the associated template file, called parameters.tpl:
<html>
<head>
<title>{t}Passing Parameters to Translations{/t}</title>
</head>

<body>

<h1>{t}Passing Parameters to Translations{/t}</h1>

<p>
{t 1=$customers 2=$orders}There are %1 customers waiting for %2 orders.{/t}
</p>

</body>
</html>

As you can see, we are passing two parameters to the text message. They are numeric arguments
to make it easy for the actual translators. The plug-in feature will substitute the string %1 with the
value of the template variable $customers, and it will replace %2 with the value of $orders.

By running the bundled tsmarty2c.php script against the parameters.tpl file, we will get the
following source:

/* templates/parameters.tpl */
gettext("Passing Parameters to Translations");

/* templates/parameters.tpl */
gettext("Passing Parameters to Translations");

/* templates/parameters.tpl */
gettext("There are %1 customers waiting for %2 orders.");

Now we just need to go through the usual process of generating the PO file from the C file, and
then converting into the binary catalog file and moving it to the correct place. Here's the output
when everything is done:

Download at Boykma.Com

Chapter 12

The Smarty Gettext plug-in is translating the message beforehand, and then replacing the
parameters with the given template variables.

Summary
In this chapter, we went over the details of how to build a website or application that supports
multiple languages, while at the same time being able to reuse the same Smarty templates for that.
We learned a lot about what Gettext is, the history behind this important tool, and how to use that
set of utilities with PHP and Smarty to accomplish our goals.

The main Gettext workflow of extracting text strings from PHP scripts or Smarty templates was
used throughout this chapter, and the Smarty Gettext plug-in was introduced to help make this a
possibility. The bundled scripts allow developers to plug Smarty templates into the normal Gettext
workflow, and continue using the existing framework for translating templates and web pages.

We also covered the advanced features of the Smarty Gettext plug-in, such as numeric parameters.
Dealing with that type of feature requires some tweaks to the way the translation usually works,
but it should be simple to follow. This feature will definitely be needed as the complexity of your
templates increases.

This chapter will help you build a strong foundation to grow from. Deploying multi-language
websites and applications has never been easier!

 229

Download at Boykma.Com

Download at Boykma.Com

Index

3
304 response code, caching, 179

A
action argument, Smarty cache handler, 172
advanced template development. See template

development, advanced
analysts, website building roles, 23
ApacheBench, benchmarking tool, 180
append method, 151
append_benchmark_results post-filter, 211
append_by_ref method, 151
architecture, software, 21
arguments, cache handlers, 172
arrays, Smarty templates

associative arrays, 54
non-associative arrays, 54
passing arrays, 54
processing deeply nested arrays, 112

assign function, 103, 148
assign_by_ref method, 148
associative array, template design, 54
auto-link urls plug-in

about, 199
class.misc.php, 200
example_auto_link_urls.php, 200
example_auto_link_urls.tpl, 200

autoload_filters variable, 144, 207
automatically loading filters, 207

B
benchmark information plug-in, 209
Benchmark_Timer class, PEAR, 211
block functions, dynamic template translation,

222
block functions, Smarty Gettext, 222
block functions, types of plug-ins, 193
built-in Smarty methods, 148
built-in Smarty variables, 139
built-in tags, 43
business logic layer, software design, 10

C
cache_contents argument, Smarty cache

handler, 172
cache_dir variable, 141
cache_handler_func property, Smarty, 175
cache_handler_func variable, 143
cache_id argument, Smarty cache handler, 172
cache_lifetime variable, 141
cache_modified_check variable, 141
Cache-Control header, effective caching, 180
caching

about, 163
advanced features, 166
avoid caching, {insert}, 169
avoid caching, custom plug-in, 170
cache groups, 167
cache_lifetime property, PHP, 164
caching property, PHP, 164
clearing cache group, 168
custom cache handler, 171
designing sites for effective caching, 178
disable template cache, 168
emptying cache, 165

caching variable, 140
caching, design concepts, 35
calendar plug-in

about, 196
example_calendar.php, 197
example_calendar.tpl, 197
function.calendar.php, 198

calendar template, real-world templates, 61
capitalize modifier, 83
cat modifier, 84
checkboxes, creating, 120
clear_all_assign method, 158
clear_all_cache function, 165
clear_all_cache method, 158
clear_assign method, 151
clear_cache function, 165
clear_cache method, 158
clear_compiled_tpl method, 159
clear_config method, 161
combining modifiers, 94

Download at Boykma.Com

comments, removing, 207
compile steps, Smarty templates, 77
compile_check property, caching, 164
compile_check variable, 140
compile_dir variable, 139
compile_id argument, Smarty cache handler, 173
compile_id variable, 143
compiler functions, types of plug-ins, 193
compiler_class variable, 144
compiler_file variable, 144
components, 38
compression with Gzip plug-in, 212
concerns, cross-cutting, 23
concerns, separation of, 22
config_booleanize variable, 144
config_class variable, 144
config_dir variable, 139
Config_File.class.php file, Smarty library, 137
config_fix_newlines variable, 144
config_load function, 104
config_load method, 160
config_overwrite variable, 144
config_read_hidden variable, 144
configuration files, advanced template

development, 95
configuration files, saving variables in, 103
configuration sections, creating, 104
count_characters modifier, 83
count_paragraphs modifier, 84
count_words modifier, 85
crontab, caching, 168
cross-cutting concerns, 23
custom cache handler, creating a, 171
customer, website building roles, 23
cycle function, 116

D
data access layer, software design, 10
data input forms, real-world templates, 67
database report template, real-world

templates, 63
date functions, Smarty, 118
date_format modifier, 85
db_cache_handler function, 173
Debug Console, 135
debug.tpl file, Smarty library, 137
debug_tpl variable, 140
debugging

php.ini configuration settings, 125
semantic errors, 126

Smarty Debug Console, 135
Smarty errors, 128

debugging variable, 139
debugging, design concepts, 35
debugging_ctrl variable, 140
default modifier, 87
default_modifiers variable, 143
default_resource_type variable, 143
default_template_handler_func variable, 144
design concepts

caching, 35
components, 38
debugging, 35
JavaScript, 36
modifiers, 36
object-oriented programming (OOP), 36
optimization, 35
plug-ins, 36
programming knowledge, 36
reusability, 36
style sheet, 35
table less layouts, 41

design problems, template design, 33
design process, software development, 8
designer, website building roles, 24
development problems, template design, 34
development versions, Smarty, 18
directory structure, Gettext, 219
directory structure, Smarty projects, 24
disable caching, 168
display method, 160
display_errors directive, php.ini, 125
display_seconds parameter, html_select_time

function, 120
display_years parameter, html_select_date

function, 120
DocumentRoot directive, Apache, 24
dynamic caching, 165
dynamic content, inserting, 100
dynamic parts, template design, 34
dynamic template translation, 222

E
editor, choosing an, 44
elements, reusing, 99
email newsletter, real-world templates, 70
error_reporting directive, php.ini, 125
error_reporting variable, 140
errors, Smarty, 128

232

Download at Boykma.Com

escape modifier, 87
ETag header, effective caching, 179
expiration_time argument, Smarty cache

handler, 173
Expires header, effective caching, 179
expression translation, Smarty Gettext, 227

F
features, Smarty, 12
fetch method, 160
File Size Format plug-in, 187
filters, Smarty

about, 14
automatic loading, 207
benchmarking information, 209
creating, 204
dynamically highlighting search keywords, 213
Gzip compression, 212
manual loading, 205
output filters, 204
post-filters, 203
pre-filters, 203
registering, 205
removing HTML comments, 207

first attribute, foreach function, 115
first variable, section loop, 59
fixed parts, template design, 34
force_compile property, Smarty, 211
force_compile variable, 140
foreach function, 106
foreach loops, logical conditions, 60
form related functions, 118
forms, real-world templates, 67
function plug-ins, types of plug-ins, 192
functions, Smarty

assign, 103
config_load, 104
cycle, 116
foreach, 106
form related functions, 118
html_checkboxes, 121
html_radios, 121
html_select_date, 119
html_select_time, 119
include, 99
insert, 100
ldelim, rdelim, 110
literal, 112
mailto, 117
section, 112

strip, 109
types of, 97

G
gallery template, advanced template

development, 80
gallery.php, 80
gallery.tpl, 81
outputl, 82

get_config_vars method, 159
get_registered_object method, 160
get_template_vars method, 159
Gettext

about, 217
advanced features, 227
directory structure, 219
msgfmt command, 221
php.ini configuration, 218
PO file, generating a, 225
Smarty templates, 222
workflow, 218
xgettext command, 220

Google Highlight plug-in, 189
groups, caching, 167
Gzip compression plug-in, 212

H
headers, effective caching

Cache-Control, 180
ETag, 179
Expires, 179
If-None-Match, 179
Last-Modified, 178

HTML comments, removing, 207
HTML List plug-in, 186
html_checkboxes function, 120
html_radios function, 120
html_select_date function, 118
html_select_time function, 118
HTMLGate Free, WYSIWYG editors, 45

I
If None Match header, effective caching, 179
If-Modified-Since header, effective caching, 178
include function

about, 99
passing variables to templates, 102
reusing page elements, 99

233

Download at Boykma.Com

indent modifier, 88
index variable, section loop, 59
index_next attribute, foreach function, 115
index_prev attribute, foreach function, 114
insert function, 100
inserts, types of plug-ins, 194
installation

Smarty, 15
Smarty plug-ins, 185

installation, Smarty
downloading, 15

internationalization, template design, 217
is_cached function, Smarty, 165
is_cached method, 158
iteration attribute, foreach function, 115
iteration variable, section loop, 60

J
JavaScript, design concepts, 36
jStrip plug-in, pre-filters, 203

L
last attribute, foreach function, 115
last-modified header, effective caching, 178
layers, software design, 9
ldelim function, 110
left_delimiter variable, 142
library, Smarty

Config_File.class.php, 137
debug.tpl, 137
methods, built-in, 148
Smarty.class.php, 138
Smarty_Compiler.class.php, 138
variables, built-in, 139

lists within templates, 106
literal function, 112
load_filter method, 157, 206
logical conditions, basic template design

foreach loops, 60
section loops, 58

loop variable, section loop, 60
lower modifier, 89

M
Macromedia Dreamweaver MX, WYSIWYG

editors, 44
mailto function, 117
management problems, template design, 34

manually loading filters, 205
max age=[seconds], cache-control header, 180
max attribute, foreach function, 114
methods, built-in

append, 151
append_by_ref, 151
assign, 148
assign_by_ref, 148
clear_all_assign, 158
clear_all_cache, 158
clear_assign, 151
clear_cache, 158
clear_compiled_tpl, 159
clear_config, 161
config_load, 160
display, 160
fetch, 160
get_config_vars, 159
get_registered_object, 160
get_template_vars, 159
is_cached, 158
load_filter, 157
register_block, 153
register_compiler_function, 154
register_function, 152
register_modifier, 155
register_object, 153
register_outputfilter, 157
register_postfilter, 156
register_prefilter, 156
register_resource, 155
template_exists, 159
trigger_error, 159
unregister_block, 154
unregister_compiler_function, 154
unregister_function, 152
unregister_modifier, 155
unregister_object, 153
unregister_outputfilter, 157
unregister_postfilter, 157
unregister_prefilter, 156
unregister_resource, 156

modifiers, advanced template development
capitalize, 83
cat, 84
combining modifiers, 94
configuration files, 95
count_characters, 83
count_paragraphs, 84
count_sentences, 85
count_words, 85
date_format, 85

234

Download at Boykma.Com

default, 87
escape, 87
indent, 88
lower, 89
nl2br, 89
regex_replace, 90
replace, 91
spacify, 91
string_format, 91
strip, 92
strip_tags, 93
truncate, 93
upper, 89
wordwrap, 94

modifiers, design concepts, 36
modifiers, types of plug-ins, 193
msgfmt command, Gettext, 221
must revalidate, cache-control header, 180

N
nested arrays, processing, 112
newsletter, real-world templates, 70
nl2br modifier, 89
no cache, cache-control header, 180
no store, cache-control header, 180
non-associative array, template design, 54

O
object-oriented programming (OOP), 36
optimization, design concepts, 35
optimizing Smarty applications, 176
output filter plug-ins, 204

P
page elements, reusing, 99
parameters, Smarty Gettext, 227
passing variables, 102
PEAR Benchmark_Timer class, 211
photo gallery template, advanced template

development, 80
PHP code within templates, 73
PHP profiling, 177
PHP script translation, Gettext, 218
php.ini,

Gettext configuration, 218
Smarty Linux configuration, 16
Smarty Windows configuration, 16

php_handling variable, 141
plug-ins, design concepts, 36
plug-ins, Smarty

about, 13
examples, 196
File Size Format plug-in, 187
filters, creating, 204
finding and installing, 185
Google Highlight plug-in, 189
HTML List plug-in, 186
output filter plug-ins, 204
post-filter plug-ins, 203
pre-filter plug-ins, 203
registering, 194
Smarty Gettext, 222
types, 192
writing plug-ins, 191

plug-ins, types of
block functions, 193
compiler functions, 193
function, 192
inserts, 194
modifiers, 193
resources, 193

plugins_dir variable, 139
postfilters,

advanced template development, 77
plug-ins, 203
Smarty, 14

pre-filters
plug-ins, 203
advanced template development, 77
Smarty, 14

presentation layer separation, 34
presentation logic layer, software design, 10
problem-solving perspective, 22
profiling PHP, 177
programmer, website building roles, 24
programmers, collaborating with, 46
programming, design concepts, 36
project manager, website building roles, 24
proxy revalidate, cache-control header, 180
public, cache-control header, 180

R
radio buttons, creating, 120
rdelim function, 110
real-world templates, 61
regex_replace modifier, 90

235

Download at Boykma.Com

register_block method, 153
register_compilation post-filter, 211
register_compiler_function method, 154
register_function method, 152
register_modifier method, 155
register_object method, 153
register_outputfilter method, 157
register_postfilter method, 156
register_prefilter method, 156
register_resource method, 155
registering filters, runtime, 205
registering plug-ins, 194
rel2abs plug-in, post-filters, 203
replace modifier, 91
reports, real-world templates, 63
request_use_auto_globals variable, 143
request_vars_order variable, 143
resource plug-ins, types of plug-ins, 193
reusability, 36
reusing page elements, 99
right_delimiter variable, 142
roles, building a website

analysts, 23
customer, 23
designer, 24
programmer, 24, 35
project manager, 24
system administrator, 24
template designer, 34

rregister_outputfilter method, 205
rtrim() function, 27
runtime registration, filters, 205

S
s maxage=[seconds], cache-control header, 180
search engine highlight plug-in

outputfilter.search_highlight.php, 214
search_highlight.php, 214
search_highlight.tpl, 214

section function, 112
section loop variables

first, 59
index, 59
iteration, 60
loop, 60
total, 60

section loops, logical conditions, 58
secure_dir variable, 142
security variable, 141
security_settings variable, 142

semantic errors, debugging, 126
separating layers, software design, 9
separation of concerns, 22
show attribute, foreach function, 114
Smarty

about, 10
advantages, 11
built-in methods, 148
built-in variables, 139
caching, 164
concepts for designers, 35
Debug Console, 135
development versions, 18
errors, 128
filters, 203
functions, 97
Gettext, 217
installation, 15
internationalization, 217
library, 137
modifiers, 77
optimizing Smarty applications, 176
plug-ins, 185
reusability, 36
template design, 33
variables, 52
working, compiled templates, 75

smarty argument, Smarty cache handler, 172
Smarty Gettext project, 222
Smarty project, starting a

business logic layer, 27
data access layer, 25
directory structure, 24
presentation layer, 29
security, 25

Smarty templates, working, 75
Smarty.class.php file, Smarty library, 138
Smarty_Compiler.class.php file, Smarty

library, 138
smarty->debugging flag, 136
software architecture, 21
software design process, 8

separation of layers, 9
spacify modifier, 91
spam indexers, avoiding, 117
start attribute, foreach function, 114
static keyword, caching, 163
step attribute, foreach function, 114
string_format modifier, 91
strip function, 109
strip modifier, 92

236

Download at Boykma.Com

strip_tags modifier, 93
student transcript template, advanced

template development
about, 77
output, 80
table structures, 78
transcript.php, 79
transcript.tpl, 79

style sheet, design concepts, 35
system administrator, website building roles, 24

T
table less design, 41
tags, built-in, 43
template design

choosing an editor, 44
debugging Smarty templates, 125
design concepts, 49
internationalization, 217

template design with Smarty
arrays, 54
built-in tags, 43
collaborating with programmers, 46
components, 38
configuration files, 95
definitions and concepts, 35
development team problems, 33
JavaScript code, 110
lists, 106
PHP code within templates, 73
reusability, 36
role of designer, 34
Smarty variables, 52
table less design, 41
WYSIWYG editors, 44

template development, advanced
about, 75
compile steps, 77
configuration files, 95
examples, 77
photo gallery example, 80
postfilters, 77
prefilters, 77
Smarty modifiers, 77
student transcript example, 77

template development, basic
foreach loops, 60
logical conditons, 56
section loops, 58

template functions, Smarty, 12
template_dir variable, 139
template_exists method, 159
template_file argument, Smarty cache

handler, 172
templates, real-world

calendar, 61
data input forms, 67
database report, 63
email newsletter, 70
PHP code embedding, 73

templating systems, 5
three-tier architecture

example, 24
software design, 9

time functions, Smarty, 118
tools

ApacheBench, 180
WinCacheGrind, 183
Xdebug, 181

total variable, section loop, 60
transcript template, advanced template

development, 77
translating expressions, Smarty Gettext, 227
translating templates with Gettext, 217
trigger_error method, 159
trimwhitespace output filter plug-in, 209
truncate modifier, 93
trusted_dir variable, 142

U
unregister_block method, 154
unregister_compiler_function method, 154
unregister_function method, 152
unregister_modifier method, 155
unregister_object method, 153
unregister_outputfilter method, 157
unregister_postfilter method, 157
unregister_prefilter method, 156
unregister_resource method, 156
upper modifier, 89
use_sub_dirs property, Smarty caching, 167
use_sub_dirs variable, 143

237

Download at Boykma.Com

V $php_handling, 141
$plugins_dir, 139
$request_use_auto_globals, 143 variable modifiers, Smarty, 12
$request_vars_order, 143 variables, built-in
$right_delimiter, 142 $autoload_filters, 144
$security, 141 $cache_dir, 141
$template_dir, 139 $cache_handler_func, 143
$trusted_dir, 142 $cache_lifetime, 141
$use_sub_dirs, 143 $cache_modified_check, 141
quick reference, 145 $caching, 140
secure_dir, 142 $compile_check, 140
security_settings, 142 $compile_dir, 139

variables, Smarty $compile_id, 143
about, 52 $compiler_class, 144
passing to included templates, 102 $compiler_file, 144
saving in configuration files, 103 $config_booleanize, 144

versions, Smarty, 18 $config_class, 144
$config_dir, 139

W $config_fix_newlines, 144
$config_overwrite, 144
$config_read_hidden, 144 whitespace, removing, 109
$debug_tpl, 140 WinCacheGrind, 183
$debugging, 139 wordwrap modifier, 94
$debugging_ctrl, 140 WYSIWYG editors, template design, 44
$default_modifiers, 143
$default_resource_type, 143 X $default_template_handler_func, 144
$error_reporting, 140 Xdebug, 181 $force_compile, 140 xgettext command, Gettext, 219, 220 $left_delimiter, 142

238

Download at Boykma.Com

	Smarty. PHP Template Programming and Applications
	Table of Contents
	Preface
	What This Book Covers
	Conventions
	Reader Feedback
	Customer Support
	Downloading the Example Code for the Book
	Errata
	Questions

	Chapter 1: Introduction to Smarty
	Templating Systems
	Why Use a Templating System?
	The Smartness of Smarty
	 Smarty Alternatives

	A Rough Guide to the Software Design Process
	Working in Teams: Layers and Separation of Concerns

	Smarty—The Ultimate Templating System for PHP
	Is Smarty Fast?
	Is Smarty Secure?

	Smarty's Main Features
	Variable Modifiers
	Template Functions
	 Debugging
	Plug ins
	 Filters

	Smarty Internals
	Installing and Configuring Smarty
	Step 1: Obtaining Smarty
	 Step 2: Configure PHP to Find the Smarty Libraries
	On Windows
	On Linux

	An Alternative to Step 2: Using Smarty without Having Full Access to the System
	Step 3: Set Up Smarty for Your Application
	Step 4: Verifying the Installation
	Smarty Development Versions on CVS

	Upgrading a Smarty Site
	Summary

	Chapter 2: Smarty Site Architecture
	 Separation of Concerns
	What Does Concern Mean?
	A Problem-Solving Perspective
	Cross-cutting Concerns

	Roles Involved in Building and Maintaining a Website
	Starting a Smarty Project
	Directory Structure
	 Securing our Smarty Project
	The Data Access Layer
	How it Works

	The Business Logic Layer
	How it Works

	 The Presentation Layer
	How it Works

	 The Result

	Summary

	Chapter 3: What Designers Need to Know
	Development Team Problems: Common Scenarios
	Roles of a Template Designer and a Programmer
	Definitions and Concepts for Designers
	Concept of Reusability and Components
	Splitting into Components
	 How to Design Table-less Layouts?
	Handy Built-in Tags

	Choosing an Editor for Template Design
	Collaborating with Programmers
	Summary

	Chapter 4: Creating a Template
	Design Concepts, from HTML to TPL
	Introduction to Smarty Variables
	Starting Templates
	Non associative Array
	Associative Array
	Passing Arrays to Smarty Templates and Manipulating Them

	Basic Templating
	Logical Conditions
	Loops
	 section
	foreach

	Templates in the Real World
	Calendar
	Database Report
	Data Input Forms
	Email Newsletter
	Running PHP Code Inside your Templates

	Summary

	Chapter 5: Advanced Templating
	Smarty under the Hood
	Compile Steps
	Prefilters and Postfilters
	What is a Smarty Modifier?

	Stretch your Imagination with Smarty
	Student Transcript
	Photo Gallery

	Available Modifiers
	 capitalize
	count_characters
	 cat
	count_paragraphs
	 count_sentences
	count_words
	date_format
	default
	escape
	indent
	lower
	upper
	nl2br
	regex_replace
	 replace
	spacify
	string_format
	strip
	 strip_tags
	truncate
	wordwrap

	Combining Modifiers
	Configuration Files
	Summary

	Chapter 6: Smarty Functions
	Types of Smarty Functions
	Functions in Action
	Action: Re-using Page Elements with the include Function
	Explanation

	Inserting Dynamic Content
	 Passing Variables to Included Templates
	Saving Variables in Configuration Files
	Creating Configuration Sections for Each Page
	Handling Lists in Templates
	Removing Extra White Space from Templates
	Handling JavaScript Code in Templates
	Processing Deeply Nested Arrays
	 Cycling Through a List of Values
	 Avoiding Spam Indexers
	Form-Related Functions
	More Form-Related Functions
	 Summary

	Chapter 7: Debugging for Designers
	Debugging Smarty Templates
	Semantic Errors
	Common Smarty Errors
	Other Common Smarty Errors
	Smarty Debug Console
	Summary

	Chapter 8: Built-in Smarty Variables and Methods
	 Built-in Smarty Variables
	$template_dir
	$compile_dir
	$config_dir
	$plugins_dir
	$debugging
	 $error_reporting
	$debug_tpl
	$debugging_ctrl
	$compile_check
	$force_compile
	$caching
	$cache_dir
	$cache_lifetime
	$cache_modified_check
	$php_handling
	$security
	$secure_dir
	$security_settings
	$trusted_dir
	$left_delimiter
	$right_delimiter
	 $request_vars_order
	$request_use_auto_globals
	$compile_id
	$use_sub_dirs
	$default_modifiers
	$default_resource_type
	$cache_handler_func
	 $autoload_filters
	$config_overwrite
	$config_booleanize
	$config_read_hidden
	$config_fix_newlines
	$default_template_handler_func
	$compiler_file
	$compiler_class
	$config_class

	 Handy Built-in Smarty Variables Table

	 Built-in Smarty Methods
	assign
	assign_by_ref
	Example: Working of assign and assign_by_ref
	append
	append_by_ref
	clear_assign
	register_function
	unregister_function
	register_object
	unregister_object
	register_block
	unregister_block
	register_compiler_function
	unregister_compiler_function
	register_modifier
	unregister_modifier
	register_resource
	 unregister_resource
	register_prefilter
	unregister_prefilter
	register_postfilter
	 unregister_postfilter
	register_outputfilter
	unregister_outputfilter
	load_filter
	 clear_cache
	clear_all_cache
	is_cached
	clear_all_assign
	 clear_compiled_tpl
	template_exists
	get_template_vars
	get_config_vars
	trigger_error
	display
	fetch
	config_load
	get_registered_object
	 clear_config

	Summary

	Chapter 9: Caching and Performance
	Caching in Smarty
	Dynamically Caching Template Sections
	Clearing the Cache
	Advanced Caching Features
	Using Cache Groups
	 Clearing a Cache Group
	Avoiding the Cache
	Creating a Custom Cache Handler
	Optimizing Smarty Applications
	 Profiling PHP
	Designing Sites for Effective Caching
	The Last Modified and ETag Headers
	The Expires Header
	The Cache Control Header

	Tools: ApacheBench (ab)
	Tools: Xdebug
	 Tools: WinCacheGrind
	 Summary

	Chapter 10: Extending Smarty with Plug-ins
	Finding and Installing Plug-ins
	 Useful Plug-ins
	HTML List Plug-in
	File Size Format Plug-in
	Google Highlight Plug-in

	Writing your own Plug-ins
	Plug-in Types
	Functions
	 Modifiers
	Block Functions
	Compiler Functions
	Prefilters, Postfilters, and Output Filters
	Resources
	 Inserts

	Registering Plug-ins
	Example Plug-in: Calendar
	Example Plug-in: Auto-link URLs
	Summary

	Chapter 11: Filters
	Prefilters
	Postfilters
	 Output Filters
	Creating Filters
	Registering a Filter at Run Time
	Manually Loading a Filter
	 Automatically Loading a Filter
	Filter #1: Remove HTML Comments
	Filter #2: Benchmark Information
	Filter #3: Compress Output with gzip
	Filter #4: Search Engine Highlight
	Summary

	Chapter 12: Internationalization
	Translation Infrastructure: Gettext
	Configuring PHP with Gettext
	Simple PHP Example
	Setting Up the Gettext Files
	 Using Gettext with Smarty
	 Generating a PO File
	Advanced Features of Smarty Gettext
	Summary

	Index

